access icon free Very high gain three-phase indirect matrix converter with two Z-source networks in its structure

Nowadays, expansion of new energy sources and the necessity of integrating them with the utility grid require more advanced power electronic converters. Matrix converters (MCs) and indirect matrix converters (IMCs) are recent solutions, which offer direct AC-to-AC conversion without the need for bulky capacitors. The main drawback associated to these converters is the limited voltage conversion ratio to 86.6%. Recently, many researchers focused on combination of the conventional IMCs and recently proposed Z-source (ZS) converters to attain higher voltage conversion ratios. The unique feature of the ZS converter is its ability to change the output voltage amplitude from zero to infinite, theoretically. Based on the previously proposed successful ZS converters, this study proposes a novel combination of two ZS networks with an IMC to achieve a very high voltage gain for practical application of integrating the renewable energy sources to the grid. Simulation results confirm the proper operation of the proposed combined converter topology.

Inspec keywords: AC-AC power convertors; matrix convertors

Other keywords: output voltage amplitude; power electronic converters; Z-source networks; IMC; very-high-gain three-phase indirect matrix converter; utility grid; renewable energy sources; Z-source converters; direct AC-to-AC conversion; ZS converter

Subjects: AC-AC power convertors

References

    1. 1)
      • 17. Karaman, E., Farasat, M., Trzynadlowski, A.M.: ‘A comparative study of series and cascaded Z-source matrix converters’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 51645173.
    2. 2)
      • 10. Zhu, M., Yu, K., Luo, F.L.: ‘Switched inductor Z-source inverter’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21502158.
    3. 3)
      • 18. Tang, Y., Xie, S., Wei, J.: ‘Grid-tied photovoltaic system with series Z-source inverter’, IET Renew. Power Gener., 2013, 7, (3), pp. 275283.
    4. 4)
      • 13. Shen, M., Wang, J., Joseph, A., et al: ‘Constant boost control of the Z-source inverter to minimize current ripple and voltage stress’, IEEE Trans. Ind. Appl., 2006, 42, (3), pp. 770778.
    5. 5)
      • 1. Karaman, E., Farasat, M., Trzynadlowski, A.M.: ‘Indirect matrix converters as generator–grid interfaces for wind energy systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 776783.
    6. 6)
      • 14. Peng, F.Z., Shen, M., Qian, Z.: ‘Maximum boost control of the Z-source inverter’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 833838.
    7. 7)
      • 7. Chiang, G.T., Itoh, J.: ‘Comparison of two overmodulation strategies in an indirect matrix converter’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 4353.
    8. 8)
      • 16. Zhang, S., Tseng, K.J., Nguyen, T.D.: ‘Novel three-phase AC-AC Z-Source converters using matrix converter theory’. 2009 IEEE Energy Conversion Congress and Exposition IEEE, 2009, pp. 30633070.
    9. 9)
      • 8. Monfared, M., Bozorgi, A.M., Rajabi Mashhadi, H.: ‘Two simple overmodulation algorithms for space vector modulated three-phase to three-phase matrix converter’, IET Power Electron., 2014, 7, (7), pp. 19151924.
    10. 10)
      • 9. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    11. 11)
      • 19. Liu, S., Ge, B., Jiang, X., et al: ‘Comparative evaluation of three Z-source/quasi-Z-source indirect matrix converters’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 692701.
    12. 12)
      • 12. Anderson, J., Peng, F.Z.: ‘Four quasi-Z-Source inverters’. 2008 IEEE Power Electronics Specialists Conf. IEEE, 2008, pp. 27432749.
    13. 13)
      • 20. Ellabban, O., Abu-Rub, H., Bayhan, S.: ‘Z-source matrix converter: An overview’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 74367450.
    14. 14)
      • 5. Kolar, J.W., Schafmeister, F., Round, S.D., et al: ‘Novel three-phase AC-AC sparse matrix converters’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 16491661.
    15. 15)
      • 22. Loh, P.C., Vilathgamuwa, D.M., Lai, Y.S., et al: ‘Pulse-width modulation of Z-source inverters’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13461355.
    16. 16)
      • 23. Liu, S., Ge, B., Jiang, X., et al: ‘Modeling, analysis, and motor drive application of quasi-Z-source indirect matrix converter’, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 2013, 33, (1/2), pp. 298319.
    17. 17)
      • 6. Rodriguez, J., Rivera, M., Kolar, J.W., et al: ‘A review of control and modulation methods for matrix converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 5870.
    18. 18)
      • 2. Wheeler, P.W., Rodriguez, J., Clare, J.C., et al: ‘Matrix converters: a technology review’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 276288.
    19. 19)
      • 21. Liu, X., Loh, P.C., Wang, P., et al: ‘Improved modulation schemes for indirect Z-source matrix converter with sinusoidal input and output waveforms’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 40394050.
    20. 20)
      • 11. Tang, Y., Xie, S., Zhang, C., et al: ‘Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability’, IEEE Trans. Power Electron., 2009, 24, (2), pp. 409415.
    21. 21)
      • 4. Nguyen, T.D., Lee, H.-H.: ‘Dual three-phase indirect matrix converter with carrier-based PWM method’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 569581.
    22. 22)
      • 15. Tang, Y., Xie, S., Ding, J.: ‘Pulsewidth modulation of Z-source inverters with minimum inductor current ripple’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 98106.
    23. 23)
      • 3. Liu, X., Wang, P., Loh, P.C., et al: ‘A three-phase dual-input matrix converter for grid integration of two AC type energy resources’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 2030.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0368
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading