access icon free Speed recovery strategy for the inertia response control of DFIGs: extended state observer based approach

The inertia response control (IRC) of doubly-fed induction generators is capable of providing the power system with controlled inertia by releasing mechanical power to or absorbing electrical power from the system when the system frequency experiences sudden changes. However, it will result in deviation of the rotor speed from the optimal working point and unexpectedly reduce the captured wind power. To restore the rotor speed as quickly after an IRC action as possible, in this study, the authors derive a novel rotor speed recovery strategy based on the extended state observer (ESO) technique. They first develop two ESOs to accurately estimate the captured wind power by the wind turbine and the system unbalance power, respectively. They then synthesise the rotor speed recovery strategy based on such estimates, including the optimal recovery timing and the control modes as well as the associated switching logics. Detailed simulations carried on PSCAD/EMTDC show that the authors’ controller outperforms the traditional proportional–integral controller in the aspects of dynamical performance, the robustness to varying working conditions and the capability to prevent the system frequency from a second drop.

Inspec keywords: machine control; asynchronous generators; wind turbines; rotors

Other keywords: optimal working point; DFIG; mechanical power; doubly-fed induction generators; wind turbine; electrical power; optimal recovery timing; PSCAD-EMTDC; inertia response control; system unbalance power; associated switching logics; captured wind power; rotor speed recovery strategy; extended state observer based approach

Subjects: Asynchronous machines; Wind power plants; Control of electric power systems

References

    1. 1)
      • 3. Brisebois, J., Aubut, N.: ‘Wind farm inertia emulation to fulfill hydro-québec's specific need’. 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 17.
    2. 2)
      • 22. Peiying, G., Feng, C.: ‘Nonlinear robust control for excitation systems base on the eso-backstepping method’. Int. Conf. on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, 2011, pp. 15411544.
    3. 3)
      • 5. Conroy, J.F., Watson, R.: ‘Frequency response capability of full converter wind turbine generators in comparison to conventional generation’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 649656.
    4. 4)
      • 30. Ma, Q., Xu, D., Shi, Y., et al: ‘Application of nsga-ii in parameter optimization of extended state observer’, in Chen, Kefa, Chi, Yong, Wang, Fei (Eds.): ‘Challenges of power engineering and environment’ (Springer, 2007), pp. 587592.
    5. 5)
      • 13. Tapia, A., Tapia, G., Ostolaza, J.X., et al: ‘Modeling and control of a wind turbine driven doubly fed induction generator’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 194204.
    6. 6)
      • 26. Khalil, H.K., Praly, L.: ‘High-gain observers in nonlinear feedback control’, Chall. Power Eng. Environ., 2014, 24, (6), pp. 9931015.
    7. 7)
      • 25. Kyum-Soo, K., Keun-Ho, R.Reduced order disturbance observer for discrete-time linear systems’, Automatica, 2013, 49, (4), pp. 968975.
    8. 8)
      • 10. Zhu, X., Wang, Y., Xu, L., et al: ‘Virtual inertia control of dfig-based wind turbines for dynamic grid frequency support’. IET Conf. on Renewable Power Generation (RPG 2011), 2011, pp. 16.
    9. 9)
      • 12. Mauricio, J.M., Marano, A., Gómez-Expósito, A., et al: ‘Frequency regulation contribution through variable-speed wind energy conversion systems’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 173180.
    10. 10)
      • 8. Gautam, D., Goel, L., Ayyanar, R., et al: ‘Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 214224.
    11. 11)
      • 11. Morren, J., De Haan, S.W., Kling, W.L., et al: ‘Wind turbines emulating inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
    12. 12)
      • 1. Morren, J., Pierik, J., De Haan, S.W.: ‘Inertial response of variable speed wind turbines’, Electr. Power Syst. Res., 2006, 76, (11), pp. 980987.
    13. 13)
      • 29. Huang, Y., Han, J.: ‘Analysis and design for the second order nonlinear continuous extended states observer’, Chin. Sci. Bull., 2000, 45, (21), pp. 19381944.
    14. 14)
      • 23. Yao, J., Jiao, Z., Ma, D.: ‘Adaptive robust control of dc motors with extended state observer’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 36303637.
    15. 15)
      • 15. Muyeen, S., Ali, M.H., Takahashi, R., et al: ‘Comparative study on transient stability analysis of wind turbine generator system using different drive train models’, IET Renew. Power Gener., 2007, 1, (2), pp. 131141.
    16. 16)
      • 17. Han, J.: ‘From pid to active disturbance rejection control’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 900906.
    17. 17)
      • 9. Zhang, Z.-S., Sun, Y.-Z., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, (1), pp. 3847.
    18. 18)
      • 27. Lee, K.-B., Blaabjerg, F.: ‘Reduced-order extended Luenberger observer based sensorless vector control driven by matrix converter with nonlinearity compensation’, IEEE Trans. Ind. Electron., 2005, 53, (1), pp. 6675.
    19. 19)
      • 28. Yang, B., Sang, Y., Shi, K., et al: ‘Design and real-time implementation of perturbation observer based sliding-mode control for vsc-hvdc systems’, Control Eng. Pract., 2016, 56, pp. 1326.
    20. 20)
      • 20. Huayu, B., Jun, L., Yujun, L., et al: ‘Research on direct torque control of permanent magnet synchronous motor drive based on extended state flux linkages observer’. Eighth Int. Conf. on Electronic Measurement and Instruments, 2007. ICEMI'07, 2007, pp. 4718.
    21. 21)
      • 21. Zhong, Q.-C., Zhang, Y., Yang, J., et al: ‘Non-linear auto-disturbance rejection control of parallel active power filters’, IET Control Theory Appl., 2009, 3, (7), pp. 907916.
    22. 22)
      • 19. Sira-Ramirez, H., Rosales-Diaz, D.: ‘Decentralized active disturbance rejection control of power converters serving a time varying load’. 33rd Chinese Control Conf. (CCC), 2014, 2014, pp. 43484353.
    23. 23)
      • 2. Lalor, G., Mullane, A., O'Malley, M.: ‘Frequency control and wind turbine technologies’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19051913.
    24. 24)
      • 4. Zhang, X., Li, H., Wang, Y.: ‘Control of dfig-based wind farms for power network frequency support’. Int. Conf. on Power System Technology (POWERCON), 2010, 2010, pp. 16.
    25. 25)
      • 18. Chang, X., Li, Y., Zhang, W., et al: ‘Active disturbance rejection control for a flywheel energy storage system’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 9911001.
    26. 26)
      • 24. Liu, H., Li, S.: ‘Speed control for pmsm servo system using predictive functional control and extended state observer’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 11711183.
    27. 27)
      • 16. Ramtharan, G., Jenkins, N., Anaya-Lara, O., et al: ‘Influence of rotor structural dynamics representations on the electrical transient performance of fsig and dfig wind turbines’, Wind Energy, 2007, 10, (4), pp. 293301.
    28. 28)
      • 6. Keung, P.-K., Li, P., Banakar, H., et al: ‘Kinetic energy of wind-turbine generators for system frequency support’, IEEE Trans. Power Syst., 2009, 1, (24), pp. 279287.
    29. 29)
      • 14. Slootweg, J., De Haan, S., Polinder, H., et al: ‘General model for representing variable speed wind turbines in power system dynamics simulations’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 144151.
    30. 30)
      • 7. Ullah, N.R., Thiringer, T., Karlsson, D.: ‘Temporary primary frequency control support by variable speed wind turbines potential and applications’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 601612.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0355
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0355
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading