access icon free Frequency control by variable speed wind turbines in islanded power systems with various generation mix

This study presents the impact on power system frequency control in small power systems based on different generator topologies with a large penetration (50%) of variable speed wind turbines. The impact of a proposed controller is investigated versus various wind speeds. In particular, wind speeds with an average wind speed just below rated wind speed proves to cause the worst frequency fluctuations regardless of the type of backup generation topology investigated during 50% wind-penetration ratio. For this wind-speed session and a hydro-based system, the proposed control system improves the frequency duration outside of the specified range [49.9, 50.1]Hz from 81 to 53% while reducing its delivered energy by only 6%. Furthermore, the proposed control reduces the absolute value of requested reserve by 49% from the hydro unit responsible for primary frequency control.

Inspec keywords: wind power plants; distributed power generation; power generation control; frequency control; hydroelectric power stations; wind turbines

Other keywords: wind-speed session; absolute value reduction; frequency fluctuations; generator topologies; frequency duration improvement; generation mix; hydro-based system; wind-penetration ratio; wind speeds; hydro unit; energy reduction; control system; power system frequency control; variable speed wind turbines; islanded power systems

Subjects: Control of electric power systems; Hydroelectric power stations and plants; Wind power plants; Distributed power generation; Frequency control

References

    1. 1)
      • 17. Miller, N.W.: ‘GE energy – modeling of GE wind turbine-generators for grid studies – V4.2’, June 2008.
    2. 2)
      • 13. Persson, M.: ‘Frequency response by wind farms in islanded power systems with high wind power penetration’. Energy and Environment, Electric Power Engineering, Chalmers University of Technology, 2015, p. 118.
    3. 3)
      • 39. Nordel: ‘Nordic grid code (nordic collection of rules)’, Report, 2007.
    4. 4)
      • 15. Kundur, P.: ‘Power system stability and control’, EPRI power system engineering series (McGraw-Hill Education (India) Pvt. Limited, New York, 1994).
    5. 5)
      • 3. Ullah, N., Thiringer, T., Karlsson, D.: ‘Temporary primary frequency control support by variable speed wind turbines; potential and applications’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 601612, doi: 10.1109/TPWRS.2008.920076.
    6. 6)
      • 11. de Vyver, J.V., Kooning, J.D.M.D., Meersman, B., et al: ‘Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 11291138, doi: 10.1109/TPWRS.2015.2417758.
    7. 7)
      • 4. Björnstedt, J.: ‘Integration of non-synchronous generation’. PhD thesis, Lund University, 2012.
    8. 8)
      • 33. Niemeyer, S.: ‘BAL-001-TRE-1 – governor droop and dead-band settings and their impact on grid frequency control’, January 2010.
    9. 9)
      • 7. Molina-Garcia, A., Munoz-Benavente, I., Hansen, A.D., et al: ‘Demand-side contribution to primary frequency control with wind farm auxiliary control’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23912399.
    10. 10)
      • 20. Fortmann, J.: ‘Modeling of wind turbines with doubly fed generator system’ (Springer Vieweg, Springer Fachmedien Wiesbaden, New York, 2014).
    11. 11)
      • 12. Klein, M., Rogers, G., Kundur, P., et al: ‘A fundamental study of inter-area oscillations in power systems’.
    12. 12)
      • 30. Åström, K.J., Wittenmark, B.: ‘Adaptive control’ (Dover Publications, Inc., Mineola, New York, 2008, 2nd edn.).
    13. 13)
      • 19. Bollen, M.H., Hassan, F.: ‘Integration of distributed generation in the power system’ (John Wiley & Sons, New Jersey, 2011), vol. 80.
    14. 14)
      • 1. Ramtharan, G., Ekanayake, J., Jenkins, N.: ‘Frequency support from doubly fed induction generator wind turbines’, IET Renew. Power Gener., 2007, 1, (1), pp. 39.
    15. 15)
      • 14. Holttinen, H.: ‘The impact of large scale wind power production on the Nordic electricity system’ (VTT Technical Research Centre of Finland, Espoo, 2004).
    16. 16)
      • 2. Persson, M., Chen, P., Carlson, O.: ‘Frequency support by wind farms in islanded power systems with high wind power penetration’. 2013 IEEE Grenoble PowerTech (POWERTECH), 2013, pp. 16, doi: 10.1109/PTC.2013.6652361.
    17. 17)
      • 27. Pujante-López, A., Gomez-Lazaro, E., Fuentes-Moreno, J.: ‘Performance comparison of a 2 mW DFIG wind turbine model under wind speed variations’.
    18. 18)
      • 24. Strachan, N., Jovcic, D.: ‘Stability of a variable-speed permanent magnet wind generator with weak ac grids’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27792788, doi: 10.1109/TPWRD.2010.2053723.
    19. 19)
      • 21. Keung, P.-K., Li, P., Banakar, H., et al: ‘Kinetic energy of wind-turbine generators for system frequency support’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 279287, doi: 10.1109/TPWRS.2008.2004827.
    20. 20)
      • 38. EirGrid: ‘Eirgrid grid code version 5.0’, Report, 2013.
    21. 21)
      • 22. de Almeida, R., Peas Lopes, J.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944950, doi: 10.1109/TPWRS.2007.901096.
    22. 22)
      • 36. Ono, T., Arai, J.: ‘Frequency control with dead band characteristic of battery energy storage system for power system including large amount of wind power generation’, Electr. Eng. Jpn., 2013, 185, (3), pp. 110, doi: 10.1002/eej.22485.
    23. 23)
      • 18. Vittal, E., O'Malley, M., Keane, A.: ‘Rotor angle stability with high penetrations of wind generation’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 353362, doi: 10.1109/TPWRS.2011.2161097.
    24. 24)
      • 37. National Grid: ‘The grid code, section cc.6.1.3 – issue 5, revision 10’, Report, 2014.
    25. 25)
      • 32. James DiCampli, W.S.: ‘Grid stability: gas turbines for primary reserve’. ASME Turbo Expo 2013: Turbine Technical Conf. and Exposition, 2013, pp. 16, doi: 10.1115/GT2013-94466.
    26. 26)
      • 31. Smith, S.: ‘The scientist and engineer's guide to digital signal processing’.
    27. 27)
      • 16. Yamashita, K., Asada, M., Yoshimura, K.: ‘A development of dynamic load model parameter derivation method’. Power Energy Society General Meeting, 2009 PES ‘09, 2009, pp. 18.
    28. 28)
      • 10. Kanellos, F., Hatziargyriou, N.: ‘Control of variable speed wind turbines equipped with synchronous or doubly fed induction generators supplying islanded power systems’, IET Renew. Power Gener., 2009, 3, (1), pp. 96108, doi: 10.1049/iet-rpg:20080023.
    29. 29)
      • 9. Vidyanandan, K., Senroy, N.: ‘Primary frequency regulation by deloaded wind turbines using variable droop’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 837846, doi: 10.1109/TPWRS.2012.2208233.
    30. 30)
      • 35. Cummings, R.W.: ‘Overview of Frequency Response Initiative (March 2010)’.
    31. 31)
      • 28. Chow, J., Sanchez-Gasca, J.: ‘Pole-placement designs of power system stabilizers’, IEEE Trans. Power Syst., 1989, 4, (1), pp. 271277, doi: 10.1109/59.32488.
    32. 32)
      • 26. Sørensen, P., Hansen, A.D., Rosas, P.A.C.: ‘Wind models for simulation of power fluctuations from wind farms’, J. Wind Eng. Ind. Aerodyn., 2002, 90, (12), pp. 13811402.
    33. 33)
      • 6. Pourbeik, P.: ‘Dynamic models for turbine-governors in power system studies’, IEEE Power & Energy Society, technical report, PES-TR1, Jan 2013..
    34. 34)
      • 23. Knuppel, T., Nielsen, J., Jensen, K., et al: ‘Power oscillation damping controller for wind power plant utilizing wind turbine inertia as energy storage’. 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 18, doi: 10.1109/PES.2011.6038908.
    35. 35)
      • 29. Yu, Y.-N., Li, Q.-H.: ‘Pole-placement power system stabilizers design of an unstable nine-machine system’, IEEE Trans. Power Syst., 1990, 5, (2), pp. 353358, doi: 10.1109/59.54540.
    36. 36)
      • 25. Kaltschmitt, M., Streicher, W., Wiese, A.: ‘Renewable energy: technology, economics and environment’ (Springer, New York, 2007).
    37. 37)
      • 34. Niemeyer, Sydney L., McIntyre, Kenneth: “FERC Technical Conference Frequency ResponseSeptember 23, 2010, online: https://www.ferc.gov/CalendarFiles/20100923090239-Niemeyer,%20NRG%20Energy.pdf.
    38. 38)
      • 5. Margaris, I., Papathanassiou, S., Hatziargyriou, N., et al: ‘Frequency control in autonomous power systems with high wind power penetration’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 189199, doi: 10.1109/TSTE.2011.2174660.
    39. 39)
      • 8. Ghosh, S., Kamalasadan, S., Senroy, N., et al: ‘Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 18611871, doi: 10.1109/TPWRS.2015.2438861.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0350
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading