access icon openaccess Improving supervised wind power forecasting models using extended numerical weather variables and unlabelled data

A variety of supervised forecasting models using numerical weather prediction data have been utilised for short-term wind power forecasting. These forecasting models only use meteorological variables of the target wind farm as essential features. This study proposes a novel method to improve existing supervised forecasting models such as support vector machines, artificial neural networks, and Gaussian processes (GPs) for higher forecasting accuracy. The proposed method develops a data-driven feature extraction procedure to utilise unlabelled numerical weather data, and the feature extraction procedure transforms extended numerical weather variables into supplementary input features which then can be used for supervised forecasting models. The only modification to an existing supervised forecasting model is the addition of these supplementary input features, and thus does not alter the training algorithm of the supervised forecasting model. For illustrative purposes, the GP is used as the supervised forecasting model to be improved. Numerical evaluation of the proposed method was performed on a subset of data provided in the 2012 Global Energy Forecasting Competition (GEF 2012). Evaluation results reveal that the proposed method achieves higher forecasting accuracy for all wind farms.

Inspec keywords: numerical analysis; feature extraction; power engineering computing; neural nets; load forecasting; Gaussian processes; support vector machines; wind power plants

Other keywords: short-term wind power forecasting; unlabelled data; support vector machines; global energy forecasting competition; wind farms; supervised wind power forecasting models; wind farm; data-driven feature extraction procedure; artificial neural networks; numerical evaluation; numerical weather prediction data; Gaussian processes; meteorological variables; supervised forecasting models; extended numerical weather variables

Subjects: Other numerical methods; Power system planning and layout; Other topics in statistics; Other topics in statistics; Wind power plants; Neural computing techniques; Other numerical methods; Knowledge engineering techniques; Power engineering computing

References

    1. 1)
      • 7. Pinson, P.: ‘Wind energy: forecasting challenges for its operational management’, Stat. Sci., 2013, 28, (4), pp. 564585.
    2. 2)
      • 9. Zhu, X., Genton, M.G.: ‘Short-term wind speed forecasting for power system operations’, Int. Stat. Rev., 2012, 80, (1), pp. 223.
    3. 3)
      • 18. Salcedo-Sanz, S., Ortiz-García, E.G., Pérez-Bellido, Á.M., et al: ‘Short term wind speed prediction based on evolutionary support vector regression algorithms’, Expert Syst. Appl., 2011, 38, (4), pp. 40524057.
    4. 4)
      • 3. Tuohy, A., Meibom, P., Denny, E., et al: ‘Unit commitment for systems with significant wind penetration’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 592601.
    5. 5)
      • 10. Monteiro, C., Bessa, R., Miranda, V., et al: ‘Wind power forecasting: state-of-the-art 2009’. ANL/DIS-10-1, Decision and Information Sciences Division, Argonne National Laboratory, 2009.
    6. 6)
      • 24. AI-Yahyai, S., Charabi, Y., Gastli, A.: ‘Review of the use of numerical weather prediction (NWP) models for wind energy assessment’, Renew. Sustain. Energy Rev., 2010, 14, (9), pp. 31923198.
    7. 7)
      • 2. Bouffard, F., Galiana, F.D.: ‘Stochastic security for operations planning with significant wind power generation’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 306316.
    8. 8)
      • 28. Xu, Q., He, D., Zhang, N., et al: ‘A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12831291.
    9. 9)
      • 37. Kou, P., Liang, D., Gao, F., et al: ‘Coordinated predictive control of DFIG-based wind-battery hybrid systems: using non-Gaussian wind power predictive distributions’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 681695.
    10. 10)
      • 31. Salakhutdinov, R.R., Hinton, G.E.: ‘Using deep belief nets to learn covariance kernels for Gaussian processes’, Adv. Neural Inf. Process. Syst., 2008, 20, pp. 12491256.
    11. 11)
      • 23. Chen, N., Qian, Z., Nabney, I.T., et al: ‘Wind power forecasts using Gaussian processes and numerical weather prediction’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 656665.
    12. 12)
      • 35. Yan, J., Li, K., Bai, E., et al: ‘Hybrid probabilistic wind power forecasting using temporally local Gaussian process’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 8795.
    13. 13)
      • 16. Amjady, N., Keynia, F., Zareipour, H.: ‘Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 265276.
    14. 14)
      • 42. Hong, T., Pinson, P., Fan, S.: ‘Global energy forecasting competition 2012’, Int. J. Forecast., 2014, 30, (2), pp. 357363.
    15. 15)
      • 43. Rasmussen, C.E., Nickisch, H.: ‘Gaussian processes for machine learning (GPML) toolbox’, J. Mach. Learn. Res., 2010, 11, pp. 30113015.
    16. 16)
      • 40. Picard, A., Davis, R.S., Gläser, M., et al: ‘Revised formula for the density of moist air (CIPM-2007)’, Metrologia, 2008, 45, (2), pp. 149155.
    17. 17)
      • 27. Li, S., Wang, P., Goel, L.: ‘Wind power forecasting using neural network ensembles with feature selection’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 14471456.
    18. 18)
      • 39. Grogg, K.: ‘Harvesting the wind: the physics of wind turbines’. Available at http://www.digitalcommons.carleton.edu/pacp/7, accessed 6 January 2016.
    19. 19)
      • 6. Morales, J.M., Conejo, A.J., Madsen, H., et al: ‘Integrating renewable in electricity markets’ (Springer, New York, 2014).
    20. 20)
      • 34. Kou, P., Liang, D., Gao, F., et al: ‘Probabilistic wind power forecasting with online model selection and warped Gaussian process’, Energy Convers. Manage., 2014, 84, pp. 649663.
    21. 21)
      • 38. Freund, Y., Haussler, D.: ‘Unsupervised learning of distributions on binary vectors using two layer networks’. UCSC-CRL-94-25, Baskin Center for Computer Engineering & Information Sciences, University of California, Santa Cruz, 1994.
    22. 22)
      • 13. Kavasseri, R.G., Seetharaman, K.: ‘Day-ahead wind speed forecasting using f-ARIMA models’, Renew. Energy, 2009, 34, (5), pp. 13881393.
    23. 23)
      • 26. Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: ‘Hybrid intelligent approach for short-term wind power forecasting in Portugal’, IET Renew. Power Gener., 2011, 5, (3), pp. 251257.
    24. 24)
      • 4. Shukla, A., Singh, S.N.: ‘Multi-objective unit commitment with renewable energy using hybrid approach’, IET Renew. Power Gener., 2016, 10, (3), pp. 327338.
    25. 25)
      • 14. Kusiak, A., Zheng, H., Song, Z.: ‘Short-term prediction of wind farm power: a data mining approach’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 125136.
    26. 26)
      • 22. Lee, D., Baldick, R.: ‘Short-term wind power ensemble prediction based on Gaussian processes and neural networks’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 501510.
    27. 27)
      • 11. Giebel, G., Brownsword, R., Kariniotakis, G., et al: ‘The state-of-the-art in short-term prediction of wind power: a literature overview’ (ANEMOS.plus, Project Deliverable Rep. D1.2, 2011).
    28. 28)
      • 30. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    29. 29)
      • 12. Costa, A., Crespo, A., Navarro, J., et al: ‘A review on the young history of the wind power short-term prediction’, Renew. Sustain. Energy Rev., 2008, 12, (6), pp. 17252744.
    30. 30)
      • 25. Xie, L., Gu, Y., Zhu, X., et al: ‘Short-term spatio–temporal wind power forecast in robust look-ahead power system dispatch’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 511520.
    31. 31)
      • 5. Ummels, B.C., Gibescu, M., Pelgrum, E., et al: ‘Impacts of wind power on thermal generation unit commitment and dispatch’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 4451.
    32. 32)
      • 15. Li, G., Shi, J.: ‘On comparing three artificial neural networks for wind speed forecasting’, Appl. Energy, 2010, 87, (7), pp. 23132320.
    33. 33)
      • 41. Welling, M., Rosen-Zui, M., Hinton, G.E.: ‘Exponential family harmoniums with an application to information retrieval’, in Saul, L.K., Weiss, Y., Bottou, L. (Eds.): ‘Advances in neural information processing systems 17’ (MIT Press, Cambridge, 2005).
    34. 34)
      • 17. De Giorgi, M.G., Ficarella, A., Tarantino, M.: ‘Error analysis of short term wind power prediction models’, Appl. Energy, 2011, 88, pp. 12981311.
    35. 35)
      • 36. Kou, P., Gao, F., Guan, X.: ‘Sparse online warped Gaussian process for wind power probabilistic forecasting’, Appl. Energy, 2013, 108, pp. 410428.
    36. 36)
      • 19. Zhang, Q., Lai, K.K., Niu, D., et al: ‘A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power’, Energies, 2012, 5, pp. 33293346.
    37. 37)
      • 33. MacKay, D.J.C.: ‘Introduction to Gaussian processes’, in Bishop, C.M. (Ed.), ‘Neural networks and machine learning’ (Springer, Berlin, 1998), pp. 133165.
    38. 38)
      • 1. Hill, D.C., McMillan, D., Bell, K.R.W., et al: ‘Application of auto-regressive models to U.K. wind speed data for power system impact studies’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 134141.
    39. 39)
      • 8. De Vos, K., Driesen, J.: ‘Active participation of wind power in operating reserves’, IET Renew. Power Gener., 2015, 9, (6), pp. 566575.
    40. 40)
      • 20. De Giorgi, M.G., Campilongo, S., Ficarella, A., et al: ‘Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)’, Energies, 2014, 7, pp. 52515272.
    41. 41)
      • 32. Rasmussen, C.E., Williams, C.K.I.: ‘Gaussian processes for machine learning’ (MIT Press, Cambridge, 2006).
    42. 42)
      • 21. Zhou, J., Shi, J., Li, G.: ‘Fine tuning support vector machines for short-term wind speed forecasting’, Energy Convers. Manage., 2011, 52, pp. 19901998.
    43. 43)
      • 29. Chapelle, O., Schölkopf, B., Zien, A.: ‘Semi-supervised learning’ (MIT Press, Cambridge, 2006).
    44. 44)
      • 44. Hinton, G.E.: ‘A practical guide to training restricted Boltzmann machines’. UTML TR 2010-003, Department of Computer Science, University of Toronto, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0339
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0339
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading