access icon free Chattering free full-order terminal sliding-mode control for maximum power point tracking of photovoltaic cells

This study presents a new chattering free full-order terminal sliding-mode controller (FOTSMC) for maximum power point tracking of photovoltaic cells. The proposed system consists of two loops, namely seeking loop and tracking loop. The seeking loop utilises an adaptive perturb and observe method for maximum power point (MPP) searching. Since the accuracy of the seeking loop depends on the tracking loop, a new FOTSMC is used in the tracking loop for tracking the MPP. The proposed control law is continuous, and therefore a chattering free system is achieved. Furthermore, since the derivatives of terms with fractional powers do not exist in the control law, the singularity problem, which exists in traditional terminal sliding-mode controllers (TSMCs), is avoided. Stability and robustness of the proposed system is presented. In order to evaluate the results of the system, a traditional TSMC is provided. Afterwards, the performance of the control system is verified through simulation and experiment.

Inspec keywords: maximum power point trackers; power generation control; tracking; solar cells; variable structure systems

Other keywords: FOTSMC; seeking loop; TSMC; maximum power point tracking; photovoltaic cells; chattering free full-order terminal sliding-mode control; terminal sliding-mode controllers; control system; maximum power point searching; adaptive perturb and observe method; tracking loop; chattering free system

Subjects: Solar cells and arrays; Control of electric power systems; Multivariable control systems; DC-DC power convertors; Photoelectric conversion; solar cells and arrays

References

    1. 1)
      • 2. Benda, V.: ‘Photovoltaics towards terawatts,progress in photovoltaic cells and modules’, IET Power Electron., 2015, 8, (12), pp. 23432351.
    2. 2)
      • 22. Wai, R.J., Shih, L.C.: ‘Design of voltage tracking control for dc-dc boost converter via total sliding-mode technique’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 25022511.
    3. 3)
      • 10. Lian, K.L., Jhang, J.H., Tian, I.S.: ‘A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization’, IEEE J. Photovoltaics, 2014, 4, (2), pp. 626633.
    4. 4)
      • 17. Utkin, V.: ‘Sliding mode control of dc/dc converters’, J. Franklin Inst., 2013, 350, (8), pp. 21462165.
    5. 5)
      • 14. Mojallizadeh, M.R., Badamchizadeh, M., Khanmohammadi, S., et al: ‘Designing a new robust sliding mode controller for maximum power point tracking of photovoltaic cells’, Sol. Energy, 2016, 132, pp. 538546.
    6. 6)
      • 18. Feng, Y., Han, F., Yu, X.: ‘Chattering free full-order sliding-mode control’, Automatica, 2014, 50, (4), pp. 13101314.
    7. 7)
      • 12. Syafaruddin, E.K., Hiyama, T.: ‘Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions’, IET Renew. Power Gener., 2009, 3, (2), pp. 239253.
    8. 8)
      • 16. Lalili, D., Mellit, A., Lourci, N., et al: ‘Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter’, Renew. Energy, 2011, 36, (12), pp. 32823291.
    9. 9)
      • 13. Tsang, K., Chan, W.: ‘Maximum power point tracking for pv systems under partial shading conditions using current sweeping’, Energy Convers. Manage., 2015, 93, pp. 249258.
    10. 10)
      • 11. Sekhar, P.C., Mishra, S.: ‘Takagi-sugeno fuzzy-based incremental conductance algorithm for maximum power point tracking of a photovoltaic generating system’, IET Renew. Power Gener., 2014, 8, (8), pp. 900914.
    11. 11)
      • 4. Chiu, C.-S., Ouyang, Y.-L., Ku, C.-Y.: ‘Terminal sliding mode control for maximum power point tracking of photovoltaic power generation systems’, Sol. Energy, 2012, 86, (10), pp. 29862995.
    12. 12)
      • 21. Ngamkong, P., Kochcha, P., Areerak, K., et al: ‘Applications of the generalized state-space averaging method to modelling of dcdc power converters’, Math. Comput. Model. Dyn. Syst., 2012, 18, (3), pp. 243260.
    13. 13)
      • 8. Mei, Q., Shan, M., Liu, L., et al: ‘A novel improved variable step-size incremental-resistance mppt method for pv systems’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 24272434.
    14. 14)
      • 9. Wang, Y., Li, Y., Ruan, X.: ‘High-accuracy and fast-speed mppt methods for pv string under partially shaded conditions’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 235245.
    15. 15)
      • 3. Azzopardi, B., Martinez-Cesea, E.A., Mutale, J.: ‘Decision support system for ranking photovoltaic technologies’, IET Renew. Power Gener., 2013, 7, (6), pp. 669679.
    16. 16)
      • 6. Kish, G.J., Lee, J.J., Lehn, P.W.: ‘Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking’, IET Renew. Power Gener., 2012, 6, (4), pp. 259266.
    17. 17)
      • 23. Lu, D.D., Nguyen, Q.N.: ‘A photovoltaic panel emulator using a buck-boost dc/dc converter and a low cost micro-controller’, Sol. Energy, 2012, 86, (5), pp. 14771484.
    18. 18)
      • 1. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2010, 4, (5), pp. 438457.
    19. 19)
      • 7. Wang, X., Wang, H., Meng, R.: ‘Study of maximum power point tracking (mppt) method based on adaptive control theory’. Advances in Mechanical and Electronic Engineering., 2012, pp. 661665.
    20. 20)
      • 5. Enany, M.A., Farahat, M.A., Nasr, A.: ‘Modeling and evaluation of main maximum power point tracking algorithms for photovoltaics systems’, Renew. Sustain. Energy Rev., 2016, 58, pp. 15781586.
    21. 21)
      • 15. Mojallizadeh, M., Badamchizadeh, M.: ‘Adaptive passivity-based control of a photovoltaic/battery hybrid power source via algebraic parameter identification’, IEEE J. Photovoltaics, 2016, 6, (2), pp. 532539.
    22. 22)
      • 19. Yazici, I., Yaylaci, E.K.: ‘Fast and robust voltage control of dc-dc boost converter by using fast terminal sliding mode controller’, IET Power Electron., 2016, 9, (1), pp. 120125.
    23. 23)
      • 20. Zhang, F., Maddy, J., Premier, G., et al: ‘Novel current sensing photovoltaic maximum power point tracking based on sliding mode control strategy’, Sol. Energy, 2015, 118, pp. 8086.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0188
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0188
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading