http://iet.metastore.ingenta.com
1887

Current source back-to-back converter for wind energy conversion systems

Current source back-to-back converter for wind energy conversion systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a new back-to-back current source converter (BTB-CSC) suitable for medium-voltage high power wind energy conversion systems (WECSs). It employs a dual three-phase permanent magnet synchronous generator and two current source inverters with a phase-shift transformer at the grid side. The proposed BTB-CSC has the following advantages: reduced power circuit and control complexity; low switching losses (zero switching losses at the inverter side); and independent control of active and reactive powers. Power system computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) simulations are used as to assess the steady state and dynamic behaviour of the proposed system under different operating conditions. It is shown that the proposed WECS can ride-through ac faults. Experimental results from scaled prototype of the proposed WECS are used to validate the simulations.

References

    1. 1)
      • 1. Gyawali, N., Ohsawa, Y., Yamamoto, O.: ‘Power management of double-fed induction generator-based wind power system with integrated smart energy storage having superconducting magnetic energy storage/fuel-cell/electrolyser’, IET Renew. Power Gener., 2011, 5, pp. 407421.
    2. 2)
      • 2. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, pp. 123138.
    3. 3)
      • 3. Lepa, E., Thurnherr, T., Faulstich, A.: ‘Design and testing of a 7 MW wind turbine medium voltage electrical drivetrain with medium speed permanent magnet synchronous generator’. EWEA 2013 Europe's Premier Wind Energy Event, 2013, pp. 18.
    4. 4)
      • 4. Alizadeh, O., Yazdani, A.: ‘A strategy for real power control in a direct-drive PMSG-based wind energy conversion system’, IEEE Trans. Power Deliv., 2013, 28, pp. 12971305.
    5. 5)
      • 5. Espi, J.M., Castello, J.: ‘Wind turbine generation system with optimized DC-link design and control’, IEEE Trans. Ind. Electron., 2013, 60, pp. 919929.
    6. 6)
      • 6. Uehara, A., Pratap, A., Goya, T., et al: ‘A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS’, IEEE Trans. Energy Convers., 2011, 26, pp. 550558.
    7. 7)
      • 7. Suvire, G.O., Mercado, P.E.: ‘Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications’, IET Gener. Transm. Distrib., 2012, 6, pp. 483492.
    8. 8)
      • 8. Yuanye, X., Ahmed, K.H., Williams, B.W.: ‘Wind turbine power coefficient analysis of a new maximum power point tracking technique’, IEEE Trans. Ind. Electron., 2013, 60, pp. 11221132.
    9. 9)
      • 9. Singh, M., Khadkikar, V., Chandra, A.: ‘Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system’, IET Power Electron., 2011, 4, pp. 122130.
    10. 10)
      • 10. Shao, Z., King-Jet, T., Vilathgamuwa, D.M., et al: ‘Design of a robust grid interface system for PMSG-based wind turbine generators’, IEEE Trans. Ind. Electron., 2011, 58, pp. 316328.
    11. 11)
      • 11. Jun, L., Bhattacharya, S., Huang, A.Q.: ‘A new nine-level active NPC (ANPC) converter for grid connection of large wind turbines for distributed generation’, IEEE Trans. Power Electron., 2011, 26, pp. 961972.
    12. 12)
      • 12. Strachan, N.P.W., Jovcic, D.: ‘Stability of a variable-speed permanent magnet wind generator with weak AC grids’, IEEE Trans. Power Deliv., 2010, 25, pp. 27792788.
    13. 13)
      • 13. Levi, E.: ‘Multiphase electric machines for variable-speed applications’, IEEE Trans. Ind. Electron., 2008, 55, pp. 18931909.
    14. 14)
      • 14. Parsa, L.: ‘On advantages of multi-phase machines’. 31st Annual Conf. of IEEE Industrial Electronics Society, 2005. IECON 2005, 2005, p. 6.
    15. 15)
      • 15. Nahome, A.A., Zaimeddine, R., Bing, L., et al: ‘Vector control of direct drive six phase permanent magnet synchronous generators’. 2011 IEEE Trondheim PowerTech, 2011, pp. 17.
    16. 16)
      • 16. Kato, S., Inui, Y., Michihira, M., et al: ‘Low-cost wind generator system with a permanent magnet synchronous generator and diode rectifiers’. ICREPQ'06 Int. Conf. on Renewable Energy and Power Quality, 2006.
    17. 17)
      • 17. Weihao, H., Yue, W., Xianwen, S., et al: ‘A novel sensorless unity power factor control method for six-phase PMSG in direct drive wind energy conversion systems’. 24th Annual IEEE Applied Power Electronics Conf. and Exposition, 2009. APEC 2009, 2009, pp. 744749.
    18. 18)
      • 18. Duran, M.J., Kouro, S., Bin, W., et al: ‘Six-phase PMSG wind energy conversion system based on medium-voltage multilevel converter’. Proc. 2011-14th European Conf. on Power Electronics and Applications (EPE 2011), 2011, pp. 110.
    19. 19)
      • 19. Jiawen, L., Heng, N., Yipeng, S.: ‘Dual stator windings PMSG fed by half-controlled converters for wind power application’. 2011 Int. Conf. on Electrical Machines and Systems (ICEMS), 2011, pp. 16.
    20. 20)
      • 20. Abdelsalam, I., Adam, G.P., Holliday, D., et al: ‘Assessment of a wind energy conversion system based on a six-phase permanent magnet synchronous generator with a twelve-pulse PWM current source converter’. IEEE ECCE Asia Downunder (ECCE Asia), 2013, pp. 849854.
    21. 21)
      • 21. Abdelsalam, I., Adam, G.P., Holliday, D., et al: ‘New back-to-back current source converter with soft start-up and shutdown capabilities’. Seventh IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2014), 2014, pp. 15.
    22. 22)
      • 22. Abdelsalam, I., Adam, G.P., Holliday, D., et al: ‘Modified back-to-back current source converter and its application to wind energy conversion systems’, IET Power Electron., 2014, 8, pp. 103111.
    23. 23)
      • 23. Abdelsalam, I., Adam, G.P., Holliday, D., et al: ‘Single-stage ac–dc buck–boost converter for medium-voltage high-power applications’, IET Renew. Power Gener., 2016, 10, pp. 184193.
    24. 24)
      • 24. O'Kelley, D., Simmons, S.: ‘Introduction to generalized electrical machine theory’ (McGraw-Hill, USA, 1968).
    25. 25)
      • 25. Abdelsalam, I., Adam, G.P., Holliday, D., et al: ‘Three-phase ac–dc buck–boost converter with a reduced number of switches’, IET Renew. Power Gener., 2015, 9, pp. 494502.
    26. 26)
      • 26. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters: principles and practice’ (John Wiley & Sons, USA, 2003).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0177
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0177
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address