Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Introduction to PRO for energy conversion applications including an electric equivalent circuit

Pressure retarded osmosis (PRO) is a renewable energy conversion process with potential for sustainable power production. This study introduces this resource to the electrical engineering community and presents the first electric equivalent circuit of the process. This provides a useful tool for integrated osmotic power plant analysis and design. The model illustrates the influence of several important non-ideal effects on power output including concentration polarisation, spatial variation, and pressure drop. The dynamic influence of salt storage by water is also considered. The influence of feed and draw input currents and hydraulic load on power output are investigated and suggest that there is some operating point that will yield maximum power. This illustrates the need for maximum power point tracking in PRO energy conversion.

References

    1. 1)
      • 13. He, W., Wang, Y., Mujtaba, I.M., et al: ‘An evaluation of membrane properties and process characteristics of a scaled-up pressure retarded osmosis (PRO) process’, Desalination, 2016, 378, pp. 113.
    2. 2)
      • 3. Maisonneuve, J., Pillay, P., Laflamme, C.B.: ‘Osmotic power potential in remote regions of Quebec’, Renew. Energy, 2015, 81, pp. 6270.
    3. 3)
      • 16. Anissimov, Y.G.: ‘Aspects of mathematical modelling of pressure retarded osmosis: review’, Membranes, 2016, 6, pp. 113.
    4. 4)
      • 12. Straub, A.P., Deshmukh, A., Elimelech, M.: ‘Pressure-retarded osmosis for power generation from salinity gradients: is it viable?’, Energy Environ. Sci., 2016, 9, pp. 3148.
    5. 5)
      • 27. Nguyen, T.P.N., Jun, B.-M., Park, H.G., et al: ‘Concentration polarization effect and preferable membrane configuration at pressure-retarded osmosis operation’, Desalination, 2016, 389, pp. 5867.
    6. 6)
      • 21. Kaarthik, S., Maisonneuve, J., Pillay, P.: ‘Real-time emulation of a pressure retarded osmosis power generation system’. IEEE Energy Conversion Congress and Exposition (ECCE 2016), Milwaukee, WI, September 2016.
    7. 7)
      • 23. Wijmans, J.G., Baker, R.W.: ‘The solution–diffusion model: a review’, J. Membr. Sci., 1995, 107, pp. 121.
    8. 8)
      • 30. Horno, J., Gonzalez-Fernandez, C.F., Hayas, A., et al: ‘Simulation of concentration polarization in electrokinetic processes by network thermodynamic methods’, Biophys. J., 1989, 55, pp. 527535.
    9. 9)
      • 15. Maisonneuve, J., Laflamme, C.B., Pillay, P.: ‘Experimental investigation of pressure retarded osmosis for renewable energy conversion: towards increased net power’, Appl. Energy, 2016, 164, pp. 425435.
    10. 10)
      • 9. Hickenbottom, K.L., Vanneste, J., Elimelech, M., et al: ‘Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis’, Desalination, 2016, 389, pp. 108118.
    11. 11)
      • 17. Kim, J., Jeong, K., Park, M.J., et al: ‘Recent advances in osmotic energy generation via pressure-retarded osmosis (PRO): a review’, Energies, 2015, 8, pp. 1182111845.
    12. 12)
      • 20. He, W., Wang, Y., Shaheed, M.H.: ‘Maximum power point tracking (MPPT) of a scale-up pressure retarded’, Appl. Energy, 2015, 158, pp. 284296.
    13. 13)
      • 14. Straub, A.P., Lin, S., Elimelech, M.: ‘Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation’, Environ. Sci. Technol., 2014, 48, pp. 1243512444.
    14. 14)
      • 25. Sivertsen, E., Holt, T., Thelin, W., et al: ‘Modelling mass transport in hollow fiber membranes used for pressure retarded osmosis’, J. Membr. Sci., 2012, 417, pp. 6979.
    15. 15)
      • 24. Lee, K.L., Baker, R.W., Lonsdale, H.K.: ‘Membranes for power generation by pressure retarded osmosis’, J. Membr. Sci., 1981, 8, pp. 141171.
    16. 16)
      • 5. Anastasio, D.D., Arena, J.T., Cole, E.A., et al: ‘Impact of temperature on power density in closed-loop pressure retarded osmosis for grid storage’, J. Membr. Sci., 2015, 479, pp. 240245.
    17. 17)
      • 28. Schock, G., Miquel, A.: ‘Mass transfer and pressure loss in spiral wound modules’, Desalination, 1987, 64, pp. 339352.
    18. 18)
      • 2. Pattle, R.E.: ‘Production of electric power by mixing fresh and salt water in hydroelectric pile’, Nature, 1954, 660, p. 174.
    19. 19)
      • 6. Helfer, F., Lemckert, C., Anissimov, Y.G.: ‘Osmotic power with pressure retarded osmosis: theory, performance and trends – a review’, J. Membr. Sci., 2014, 453, pp. 337358.
    20. 20)
      • 22. Banchik, L.D., Sharqawy, M.H., Lienhard, J.H.V.: ‘Limits of power production due to finite membrane area in pressure retarded osmosis’, J. Membr. Sci., 2014, 468, pp. 8189.
    21. 21)
      • 4. Prante, J.L., Ruskowitz, J.A., Childress, A.E., et al: ‘RO-PRO desalination: an integrated low-energy approach to seawater desalination’, Appl. Energy, 2014, 120, pp. 104114.
    22. 22)
      • 18. Maisonneuve, J., Pillay, P., Laflamme, C.B.: ‘Pressure-retarded osmotic power model considering non-ideal effects’, Renew. Energy, 2015, 75, pp. 416424.
    23. 23)
      • 19. Naguib, M.F., Maisonneuve, J., Laflamme, C.B., et al: ‘Modeling pressure-retarded osmosis in commercial length membranes’, Renew. Energy, 2015, 76, pp. 619627.
    24. 24)
      • 26. McCutcheon, J.R., Elimelech, M.: ‘Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis’, J. Membr. Sci., 2006, 284, pp. 237247.
    25. 25)
      • 1. Logan, B.E., Elimelech, M.: ‘Membrane-based processes for sustainable power generation using water’, Nature, 2012, 488, pp. 313319.
    26. 26)
      • 29. Horno, J., Gonzalez-Fernandez, C.F., Hayas, A., et al: ‘Application of network thermodynamics to the computer modelling of nonstationary diffusion through heterogeneous membranes’, J. Membr. Sci., 1989, 42, pp. 112.
    27. 27)
      • 8. Achilli, A., Childress, A.E.: ‘Pressure retarded osmosis: from the vision of Sidney Loeb to the first experimental installation – review’, Desalination, 2010, 261, pp. 205211.
    28. 28)
      • 10. Chou, S., Wang, R., Fane, A.G.: ‘Robust and high performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis’, J. Membr. Sci., 2013, 448, pp. 4454.
    29. 29)
      • 7. Loeb, S., Norman, R.S.: ‘Osmotic power plants’, Science, 1975, 189, pp. 654655.
    30. 30)
      • 11. Yip, N.G., Tiraferri, A., Phillip, W.A., et al: ‘Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients’, Environ. Sci. Technol., 2011, 45, pp. 43604369.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0173
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0173
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address