access icon free Active distribution power system with multi-terminal DC links

A fast power restoration operational scheme and relevant stabilising control is proposed for active distribution power systems with multi-terminal DC network in replacement of the conventional normal open switches. A nine-feeder benchmark distribution power system is established with a four-terminal medium power DC system injected. The proposed power restoration scheme is based on the coordination among distributed control among relays, load switches, voltage source converters and autonomous operation of multi-terminal DC system. A DC stabiliser is proposed with virtual impedance method to damp out potential oscillation caused by constant power load terminals. The proposed system and controls are validated by frequency domain state-space model and time-domain case study with Matlab/Simulink.

Inspec keywords: time-domain analysis; frequency-domain analysis; power system stability; distributed control; power distribution; power convertors

Other keywords: frequency domain state-space model; voltage source converters; Matlab-Simulink; DC stabiliser; multiterminal DC links; autonomous operation; time-domain case study; load switches; four-terminal medium power DC system; fast power restoration operational scheme; virtual impedance; multiterminal DC network; relay system; relevant stabilising control; distributed control; active distribution power system; nine-feeder benchmark distribution power system; constant power load terminals

Subjects: Power electronics, supply and supervisory circuits; Power convertors and power supplies to apparatus; Control of electric power systems; Mathematical analysis; Power system control; Distribution networks; Mathematical analysis; Stability in control theory

References

    1. 1)
      • 22. Marx, D., Magne, P., Nahid-Mobarakeh, B., et al: ‘Large signal stability analysis tools in DC power systems with constant power loads and variable power loads – a review’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17731787.
    2. 2)
      • 1. Lasseter, R.: ‘Microgrid’. IEEE PES Winter Meeting, January 2002, pp. 305308.
    3. 3)
      • 14. Ahmadi, H., Marti, J.R.: ‘Distribution system optimization based on a linear power-flow formulation’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 2533.
    4. 4)
      • 13. Qin, Z., Shirmohammadi, D., Liu, W.-H.E.: ‘Distribution feeder reconfiguration for service restoration and load balancing’, IEEE Trans. Power Syst., 1997, 12, (2), pp. 724729.
    5. 5)
      • 4. Karki, R., Billinton, R.: ‘Reliability/cost implications of PV and wind energy utilization in small isolated power systems’, IEEE Trans. Energy Convers., 2001, 16, (4), pp. 368373.
    6. 6)
      • 11. Liu, N., Chen, Q., Lu, X., et al: ‘A charging strategy for PV-based battery switch stations considering service availability and self-consumption of PV energy’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 48784889.
    7. 7)
      • 27. Olowookere, O., Skarvelis-Kazakos, S., Habtay, Y., et al: ‘Fault ride through during loss of converter in a 4-VSC based HVDC transmission’. Proc. of IEEE PES Innovative Smart Grid Technologies, Istanbul, Turkey, 2014, pp. 16.
    8. 8)
      • 12. Wu, J.S., Tomsovic, K.L., Chen, C.S.: ‘A heuristic search approach to feeder switching operations for overload, faults, unbalanced flow and maintenance’, IEEE Trans. Power Deliv., 1991, 6, (4), pp. 15791585.
    9. 9)
      • 2. Chan, C.C.: ‘An overview of electric vehicle technology’, Proc. IEEE, 1993, 81, (9), pp. 12021213.
    10. 10)
      • 10. Hajimiragha, A., Canizares, C.A., Fowler, M.W., et al: ‘Optimal transition to plug-in hybrid electric vehicles in Ontario, Canada, considering the electricity-grid limitations’, IEEE Trans. Ind. Electron., 2012, 3, (3), pp. 407415.
    11. 11)
      • 7. Barragan, M., Mauricio, J.M., Marano, A., et al: ‘Operational benefits of multiterminal DC-links in active distribution networks’. Proc. of IEEE Power and Energy Society General Meeting, July 2012, pp. 16.
    12. 12)
      • 19. Rudion, K., Orths, A., Styczynski, Z.A., et al: ‘Design of benchmark of medium voltage distribution network for investigation of DG integration’. Proc. of IEEE Power Engineering Society General Meeting, 2006.
    13. 13)
      • 16. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    14. 14)
      • 9. Dahal, S., Mithulananthan, N., Saha, T.K.: ‘Assessment and enhancement of small signal stability of a renewable-energy-based electricity distribution system’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 407415.
    15. 15)
      • 26. Technical information of IGBT-Module FZ3600R17HP4’. Available at http://www.infineon.com/dgdl/Infineon-FZ3600R17HP4-DS-v02_02-en_de.pdf?fileId=db3a30432313ff5e01235601c5db1610, accessed 10 July 2016.
    16. 16)
      • 17. UK Power Network: ‘Long term development statement network summary 2012’ (London Power Networks Plc, 2012), pp. 814.
    17. 17)
      • 15. Khushalani, S., Solanki, J.M., Schulz, N.N.: ‘Optimized restoration of unbalanced distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 624630.
    18. 18)
      • 25. Prieto-Araujo, E., Egea-Alvarez, A., Fekriasl, S., et al: ‘DC voltage droop control design for multiterminal HVDC systems considering AC and DC grid dynamics’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 575585.
    19. 19)
      • 5. Bresesti, P., Kling, W.L., Hendriks, R.L., et al: ‘HVDC connection of offshore wind farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    20. 20)
      • 18. EDS 08-0150: ‘London 33 kV design and customer supplies’, 2014.
    21. 21)
      • 21. Kazmierkowski, M.P., Malesani, L.: ‘Current control techniques for three-phase voltage-source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703.
    22. 22)
      • 20. Chen, D., Xu, L.: ‘Autonomous DC voltage control of a DC microgrid with multiple slack terminals’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18971905.
    23. 23)
      • 23. Chen, D., Xu, L.: ‘DC microgrid dynamic performance assessment and enhancement based on virtual impedance method’. Proc. of IECON 2014 – 40th Annual Conf. of the IEEE Industrial Electronics Society, 2014, pp. 13631369.
    24. 24)
      • 6. Alcala, J., Cardenas, V., Perez-Ramirez, , et al: ‘Improving power flow in transformers using a BTB converter to balance low voltage feeders’. Proc. of Energy Conversion Congress and Exposition (ECCE), 2012, pp. 20382044.
    25. 25)
      • 8. Mithulananthan, N., Canizares, C.A., Reeve, J., et al: ‘Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 786792.
    26. 26)
      • 24. Gu, Y., Li, W., He, X.: ‘Passivity-based control of DC microgrid for self-disciplined stabilization’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 26232632.
    27. 27)
      • 3. Atwa, Y.M., El-Saadany, E.F., Guise, A.-C.: ‘Supply adequacy assessment of distribution system including wind-based DG during different modes of operation’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 7886.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0154
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0154
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading