access icon free Controllable DC-link fault current limiter augmentation with DC chopper to improve fault ride-through of DFIG

Doubly fed induction generator (DFIG) based wind turbines are sensitive to grid faults due to utilising small-scale rotor side converter (RSC). The application of crowbar protection to improve the fault ride-through (FRT) capability of the DFIG converts it to a squirrel cage induction generator, which makes it difficult to comply with grid codes. This study proposes an innovative DC-link controllable fault current limiter (C-FCL) based FRT scheme for the RSC to improve the FRT capability of the DFIG. The proposed scheme replaces the AC crowbar protection and eliminates its disadvantages. The C-FCL does not affect the normal operation of the DFIG. By means of the proposed scheme, rotor over-currents are successfully limited during balanced and unbalanced grid faults, even at zero grid voltage. Also, the C-FCL prevents rotor acceleration and high torque oscillations. In this study, an analysis of the proposed approach is presented in detail. The performance of the proposed scheme is compared with the conventional crowbar protection scheme through simulation studies carried out in power system computer-aided design/electromagnetic transients, including dc software (PSCAD/EMTDC). Moreover, the main concept of the proposed approach is validated with an experimental setup and test results are presented.

Inspec keywords: fault current limiters; wind turbines; asynchronous generators

Other keywords: dc software; fault ride-through capability; doubly fed induction generator; small-scale rotor side converter; wind turbines; DC chopper; electromagnetic transients; controllable DC-link fault current limiter augmentation; DFIG; power system computer-aided design

Subjects: Protection apparatus; Asynchronous machines; Wind power plants

References

    1. 1)
      • 27. Guo, W., Xiao, L., Dai, S., et al: ‘Evaluation of the performance of BTFCLs for enhancing LVRT capability of DFIG’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 36233637.
    2. 2)
      • 34. Erlich, I., Wrede, H., Feltes, C.: ‘Dynamic behavior of DFIG-based wind turbines during grid faults’. Power Conversion Conf. – Nagoya, 2007, PCC ‘07, 2007, pp. 11951200.
    3. 3)
      • 11. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
    4. 4)
      • 10. Pannell, G., Zahawi, B., Atkinson, D.J., et al: ‘Evaluation of the performance of a DC-link brake chopper as a DFIG low-voltage fault-ride-through device’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 535542.
    5. 5)
      • 7. Rahimi, M., Parniani, M.: ‘Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement’, IET Renew. Power Gener., 2010, 4, (3), pp. 242252.
    6. 6)
      • 37. Chen, S., Li, P., Ball, R., et al: ‘Analysis of a switched impedance transformer-type nonsuperconducting fault current limiter’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 19251936.
    7. 7)
      • 17. Chen, W., Xu, D., Zhu, N., et al: ‘Control of doubly-fed induction generator to ride-through recurring grid faults’, IEEE Trans. Power Electron., 2016, 31, pp. 48314846, ed, Jul..
    8. 8)
      • 26. Guo, W., Xiao, L., Dai, S., et al: ‘LVRT capability enhancement of DFIG with switch-type fault current limiter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 332342.
    9. 9)
      • 33. Pena, R., Clare, J.C., Asher, G.M.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’, IEE Proc., Electr. Power Appl., 1996, 143, (3), pp. 231241.
    10. 10)
      • 5. Netz, E.: ‘Grid code; high and extra high voltage’, in E-One Netz GmbH, Bayreuth vol. 4, ed, 2006.
    11. 11)
      • 15. Flannery, P.S., Venkataramanan, G.: ‘Unbalanced voltage sag ride-through of a doubly fed induction generator wind turbine with series grid-side converter’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 18791887.
    12. 12)
      • 21. Lopez, J., Gubia, E., Olea, E., et al: ‘Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 42464254.
    13. 13)
      • 8. Wang, S., Chen, N., Yu, D., et al: ‘Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration’, Energy Convers. Manage., 2015, 93, (3), pp. 239248.
    14. 14)
      • 12. Kanjiya, P., Ambati, B.B., Khadkikar, V.: ‘A novel fault-tolerant DFIG-based wind energy conversion system for seamless operation during grid faults’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 12961305.
    15. 15)
      • 29. Hossain, M.M., Ali, M.H.: ‘Transient stability improvement of doubly fed induction generator based variable speed wind generator using DC resistive fault current limiter’, IET Renew. Power Gener., 2016, 10, (2), pp. 150157.
    16. 16)
      • 22. Mendes, V.F., Sousa, C.V.d., Hofmann, W., et al: ‘Doubly-fed induction generator ride-through fault capability using resonant controllers for asymmetrical voltage sags’, IET Renew. Power Gener., 2015, 9, (7), pp. 783791.
    17. 17)
      • 39. Keyhani, A., Marwali, M.: ‘Smart power grids 2011’ (Springer, 2012).
    18. 18)
      • 3. Lopez, J., Sanchis, P., Roboam, X., et al: ‘Dynamic behavior of the doubly fed induction generator during three-phase voltage dips’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 709717.
    19. 19)
      • 2. Hansen, A.D., Michalke, G.: ‘Fault ride-through capability of DFIG wind turbines’, Renew. Energy, 2007, 32, (9), pp. 15941610.
    20. 20)
      • 23. Naderi, S.B., Jafari, M., Hagh, M.T.: ‘Parallel-resonance-type fault current limiter’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 25382546.
    21. 21)
      • 1. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    22. 22)
      • 20. Nanou, S., Papathanassiou, S.: ‘Evaluation of a communication-based fault ride-through scheme for offshore wind farms connected through high-voltage DC links based on voltage source converter’, IET Renew. Power Gener., 2015, 9, (8), pp. 882891.
    23. 23)
      • 18. Xie, D., Xu, Z., Yang, L., et al: ‘A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33023310.
    24. 24)
      • 38. Sulla, F., Svensson, J., Samuelsson, O.: ‘Short-circuit analysis of a doubly fed induction generator wind turbine with direct current chopper  atprotection’, Wind Energy, 2013, 16, (1), pp. 3749.
    25. 25)
      • 24. Naderi, S.B., Jafari, M., Tarafdar Hagh, M.: ‘Controllable resistive type fault current limiter (CR-FCL) with frequency and pulse duty-cycle’, Int. J. Electr. Power Energy Syst., 2014, 61, (10), pp. 1119.
    26. 26)
      • 35. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    27. 27)
      • 25. Hagh, M.T., Abapour, M.: ‘Nonsuperconducting fault current limiter with controlling the magnitudes of fault currents’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 613619.
    28. 28)
      • 32. Abad, G., Lopez, J., Rodríguez, M., et al: ‘Doubly fed induction machine: modeling and control for wind energy generation’ (John Wiley & Sons, 2011), vol. 85.
    29. 29)
      • 31. Shirai, Y., Miyato, Y., Taguchi, M., et al: ‘Over-voltage suppression in a fault current limiter by a ZnO varistor’, IEEE Trans. Appl. Supercond., 2003, 13, (2), pp. 20642067.
    30. 30)
      • 19. Bu, S.Q., Du, W., Wang, H.F., et al: ‘Power angle control of grid-connected doubly fed induction generator wind turbines for fault ride-through’, IET Renew. Power Gener., 2013, 7, (1), pp. 1827.
    31. 31)
      • 16. Hu, J., Xu, H., He, Y.: ‘Coordinated control of DFIG's RSC and GSC under generalized unbalanced and distorted grid voltage conditions’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 28082819.
    32. 32)
      • 6. Justo, J.J., Mwasilu, F., Jung, J.-W.: ‘Doubly-fed induction generator based wind turbines: a comprehensive review of fault ride-through strategies’, Renew. Sustain. Energy Rev., 2015, 45, (5), pp. 447467.
    33. 33)
      • 13. Ambati, B.B., Kanjiya, P., Khadkikar, V.: ‘A low component count series voltage compensation scheme for DFIG WTs to enhance fault ride-through capability’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 208217.
    34. 34)
      • 28. Rashid, G., Ali, M.H.: ‘Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 939947.
    35. 35)
      • 36. Chen, S.: ‘A non-superconducting fault current limiter (NSFCL)’. 2013.
    36. 36)
      • 4. Lopez, J., Gubia, E., Sanchis, P., et al: ‘Wind turbines based on doubly fed induction generator under asymmetrical voltage dips’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 321330.
    37. 37)
      • 9. Huchel, L., Moursi, M.S., Zeineldin, H.H.: ‘A parallel capacitor control strategy for enhanced FRT capability of DFIG’, IEEE Trans. Sust. Energy, 2015, 6, (2), pp. 303312.
    38. 38)
      • 30. Elshiekh, M.E., Mansour, D.E.A., Azmy, A.M.: ‘Improving fault ride-through capability of DFIG-based wind turbine using superconducting fault current limiter’, IEEE Trans. Appl. Supercond., 2013, 23, (3), pp. 56012045601204.
    39. 39)
      • 14. Flannery, P.S., Venkataramanan, G.: ‘A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 11261135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0146
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Erratum: Controllable DC-link fault current limiter augmentation with DC chopper to improve fault ride-through of DFIG