access icon free Damping torque analysis of power systems with DFIGs for wind power generation

A grid-connected double fed induction generator(DFIG) for wind power generation can affect power system small-signal angular stability in two ways: by changing the system load flow condition and dynamically interacting with synchronous generators (SGs). This study presents the application of conventional method of damping torque analysis (DTA) to examine the effect of DFIG's dynamic interactions with SGs on the small-signal angular stability. It shows that the effect is due to the dynamic variation of power exchange between the DFIG and power system and can be estimated approximately by the DTA. Consequently, if the DFIG is modelled as a constant power source when the effect of zero dynamic interactions is assumed, the impact of change of load flow brought about by the DFIG can be determined. Thus the total effect of DFIG can be estimated from the result of DTA added on that of constant power source model. Applications of the DTA method proposed in this study are discussed. An example of multi-machine power systems with grid-connected DFIGs is presented to demonstrate and validate the DTA method proposed and conclusions obtained in this study.

Inspec keywords: asynchronous generators; power generation control; wind power plants; load flow control; torque control; power grids; power system stability; synchronous generators

Other keywords: SG; constant power source model; power exchange dynamic variation; multimachine power system small-signal angular stability; wind power generation; DTA method; damping torque analysis; zero dynamic interactions; grid-connected DFIG; synchronous generators; system load flow condition

Subjects: Asynchronous machines; Mechanical variables control; Wind power plants; Control of electric power systems; Stability in control theory; Synchronous machines; Power system control

References

    1. 1)
      • 20. Klein, M., Roger, G.J., Kundur, P.: ‘A fundamental study of inter-area oscillations in power systems’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 914921.
    2. 2)
      • 1. Gautam, D., Vittal, V., Harbour, T.: ‘Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14261434.
    3. 3)
      • 8. Quintero, J., Vittal, V., Heydt, G.T., et al: ‘The impact of increased penetration of converter control-based generators on power system modes of oscillation’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 22482256.
    4. 4)
      • 25. Fernandez, L.M., Garcia, C.A., Jurado, F.: ‘Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation’, Electr. Power Syst. Res., 2008, 33, (9), pp. 17381452.
    5. 5)
      • 9. Du, W.J., Bi, J.T., Wang, T., et al: ‘Impact of grid connection of large-scale wind farms on power system small-signal angular stability’, CSEE J. Power Energy Syst., 2015, 1, (2), pp. 8389.
    6. 6)
      • 10. Heffron, W.G., Phillips, R.A.: ‘Effect of modern amplidyne voltage regulators on underexcited operation of large turbine generators’, IEEE Trans. Power Appar. Syst., 1952, 71, (1), pp. 692697.
    7. 7)
      • 16. Hammad, A.E.: ‘Analysis of power system stability enhancement by static VAR compensators’, IEEE Trans. Power Syst., 1986, 1, (4), pp. 222227.
    8. 8)
      • 21. Rogers, G.: ‘Power system oscillations’ (Kluwer, Norwell, 2000).
    9. 9)
      • 4. Vittal, E., O'Malley, M., Keane, A.: ‘Rotor angle stability with high penetrations of wind generation’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 353362.
    10. 10)
      • 6. Mendonca, A., Lopes, J.A.P.: ‘Impact of large scale wind power integration on small signal stability’, Fut. Power Syst., 2005, 1, (5), pp. 15.
    11. 11)
      • 18. Wang, H.F., Swift, F.J.: ‘Capability of the static VAR compensator in damping power system oscillations’, IET Proc., Gener. Transm. Distrib., 1996, 143, (4), pp. 353358.
    12. 12)
      • 12. Wang, H.F.: ‘A unified model for the analysis of FACTS devices in damping power system oscillations part III: unified power flow controller’, IEEE Trans. Power Deliv., 2000, 15, (3), pp. 978983.
    13. 13)
      • 24. Ko, H.S., Yoon, G.G., Kyung, N.H., et al: ‘Modeling and control of DFIG-based variable-speed wind-turbine’, Electr. Power Syst. Res., 2008, 78, (11), pp. 18411849.
    14. 14)
      • 7. Tsourakis, G., Nomikos, B.M., Vournas, C.D.: ‘Contribution of doubly fed wind generators to oscillation damping’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 783791.
    15. 15)
      • 11. Mello, F.P., Concordia, C.: ‘Concepts of synchronous machine stability as affected by excitation control’, IEEE Trans. Power Appar. Syst., 1969, PAS-88, (4), pp. 316329.
    16. 16)
      • 13. Wang, H.F., Swift, F.J., Li, M.: ‘A unified model for the analysis of FACTS devices in damping power system oscillations part II: multi-machine power systems’, IEEE Trans. Power Deliv., 1998, 13, (4), pp. 13551362.
    17. 17)
      • 22. Ekanayake, J.B., Holdsworth, L., Jenkins, N.: ‘Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines’, Electr. Power Syst. Res., 2003, 67, (3), pp. 207215.
    18. 18)
      • 17. Zhou, E.Z.: ‘Application of static VAR compensators to increase power system damping’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 655661.
    19. 19)
      • 23. Feijóo, A., Cidrás, J., Carrillo, C.: ‘A third order model for the doubly-fed induction machine’, Electr. Power Syst. Res., 2000, 56, (2), p. 121.
    20. 20)
      • 14. Wang, H.F., Swift, F.J.: ‘A unified model for the analysis of FACTS devices in damping power system oscillations part I: single-machine infinite-bus power systems’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 941946.
    21. 21)
      • 5. Vittal, E., Keane, A.: ‘Identification of critical wind farm locations for improved stability and system planning’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 29502958.
    22. 22)
      • 26. Elkington, K., Knazkins, V., Ghandhari, M.: ‘On the stability of power systems containing doubly fed induction generator-based generation’, Electr. Power Syst. Res., 2008, 78, (9), pp. 14771484.
    23. 23)
      • 15. Yu, Y.N.: ‘Electric power system dynamics’ (Academic, New York, 1983).
    24. 24)
      • 2. Slootweg, J.G., Kling, W.L.: ‘The impact of large scale wind power generation on power system oscillations’, Electr. Power Syst. Res., 2003, 67, (1), pp. 920.
    25. 25)
      • 3. Sanchez-Gasca, J.J., Miller, N.W., Price, W.W.: ‘A modal analysis of a two-area system with significant wind power penetration’, Power Syst. Conf. Exposition, 2004, 2, pp. 11481152.
    26. 26)
      • 19. Du, W., Wang, H.F., Ju, P., et al: ‘Damping torque analysis for DC bus implemented damping control’, Eur. Trans. Electr. Power, 2010, 20, (3), pp. 277289.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0139
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0139
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading