Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combining droop and direct current vector control for control of parallel inverters in microgrid

Traditionally, active and reactive power sharing between parallel inverters based on droop control method is considered as a high priority for operating an islanded microgrid. An issue in droop control of parallel inverters in the islanding mode is the voltage drop associated with reactive power sharing within a microgrid. However, maintaining microgrid voltage stability while sharing active power between parallel inverters should be the primary objective for a microgrid. This study proposes to integrate droop and direct-current vector control (DCVC) techniques for active power sharing and bus voltage control within a microgrid. The proposed approach consists of a droop-only controlled unit whose function is similar to a traditional slack bus generator and the rest inverters controlled by using a combined droop-DCVC technique. The droop-DCVC controlled units provide active power sharing among parallel inverters and at the same time maintain microgrid voltage level by injecting the needed reactive power that is determined automatically from the droop-DCVC controllers. Parallel inverter units with loads for a microgrid in the islanding mode are simulated using Matlab/Simulink and Opal-RT real-time simulation system. The hardware experiment is also conducted for two parallel inverters. Results show the effectiveness and excellent performance of parallel inverters in the microgrid by combining DCVC and droop methods.

References

    1. 1)
      • 12. Guerrero, J.M., Juan, C.V., Matas, J., et al: ‘Control strategy for flexible microgrid based on parallel line-interactive UPS systems’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 726736.
    2. 2)
      • 14. Savaghebi, M., Jalilian, A., Juan, C.V., et al: ‘Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 797807.
    3. 3)
      • 1. Peças Lopes, J.A., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    4. 4)
      • 4. Prodanović, M., Green, T.C.: ‘Control and filter design of three-phase inverters for high power quality grid connection’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 373380.
    5. 5)
      • 2. Guerrero, J.M., Garcia de Vicuña, L., Matas, J., et al: ‘A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems’, IEEE Trans. Power Electron, 2004, 19, (5), pp. 12051213.
    6. 6)
      • 21. Haykin, S.S.: ‘Neural networks: a comprehensive foundation’ (Prentice Hall press, 1999).
    7. 7)
      • 18. Bergen, A.R.: ‘Power systems analysis’ (Prentice-Hall, 1986).
    8. 8)
      • 9. Chandorkar, M.C., Divan, D.M.: ‘Control of parallel connected inverters in standalone ac supply system’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 136143.
    9. 9)
      • 10. Wei, Y., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    10. 10)
      • 15. Tuladhar, A., Jin, H., Unger, T., et al: ‘Parallel operation of single phase inverter modules with no control interconnections’. Proc. IEEE APEC'97, 1997, pp. 94100.
    11. 11)
      • 7. Guerrero, J.M., Matas, J., Garcia de Vicuña, L., et al: ‘Wireless-control strategy for parallel operation of distributed-generation inverters’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 14611470.
    12. 12)
      • 8. Barsali, S., Ceraolo, M., Pelachi, P., et al: ‘Control techniques of dispersed generators to improve the continuity of electricity supply’. IEEE PES Winter Meeting, 2002, pp. 789794.
    13. 13)
      • 6. Tuladhar, A., Jin, H., Unger, T., et al: ‘Control of parallel inverters in distributed AC power systems with consideration of line impedance effect’, IEEE Trans. Ind. Appl., 2000, 36, (1), pp. 131138.
    14. 14)
      • 5. Guerrero, J.M., Garcia de Vicuña, L., Matas, J., et al: ‘Output impedance design for parallel-connected UPS inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    15. 15)
      • 13. Savaghebi, M., Jalilian, A., Juan, C.V., et al: ‘Secondary control for voltage quality enhancement in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18931902.
    16. 16)
      • 20. Li, S., Haskew, T.A., Xu, L.: ‘Control of HVDC light systems using conventional and direct-current vector control approaches’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 31063118.
    17. 17)
      • 17. Li, S., Haskew, T.A., Hong, Y., et al: ‘Direct-current vector control of three-phase grid-connected rectifier-inverter’, Electr. Power Syst. Res., 2011, 81, (2), pp. 357366.
    18. 18)
      • 19. Ishikawa, T., Funato, H., Ohtaki, T., et al: ‘Transmission power control using variable inductance with feedforward- and feedback-based power controllers’. IEEE PEDS, 1999, pp. 4651.
    19. 19)
      • 16. Han, H., Liu, Y., Sun, Y., et al: ‘An improved droop control strategy for reactive power sharing in islanded microgrid’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 31333141.
    20. 20)
      • 3. Li, Y., Vilathgamuwa, D.M., Chiang Loh, P.: ‘Design, analysis, and real time testing of a controller for multibus microgrid system’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11951204.
    21. 21)
      • 11. Guerrero, J.M., Matas, J., Garcia de Vicuña, L., et al: ‘Decentralized control for parallel operation of distributed generation inverters using resistive output impedance’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 9941004.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0107
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0107
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address