access icon free Decoupled controller for single-phase grid connected rooftop PV systems to improve voltage profile in residential distribution systems

Unity power factor injection from single-phase photovoltaics (PVs) located towards the end of a residential feeder leads to voltage rise problems. Also, unbalanced current injection due to variable solar insolation results in voltage unbalancing and makes the situation worst. A decoupled controller for a single-phase PV inverter is proposed to improve the voltage profile of the distribution feeders. The proposed controller consists of the following components: voltage regulator (to control the amount of reactive power injection), outer voltage control loop (slow controller to set the reference for the inner current loop), inner current control loop (to control the PV inverters) and modified second-order generalised integrator (to generate fundamental frequency). A sample distribution systems consisting of several PVs located in all three phases and a three-phase induction motor load is considered. The real-time hardware-in-the-loop simulations are performed to test the efficacy of the proposed controller scheme. Results show the improvement in voltage regulation of different buses.

Inspec keywords: reactive power control; invertors; induction motors; voltage control; photovoltaic power systems; power grids; electric current control; voltage regulators

Other keywords: voltage rise problems; inner current control loop; single-phase grid connected rooftop PV systems; real-time hardware-in-the-loop; residential distribution systems; outer voltage control loop; distribution feeders; voltage profile; voltage unbalancing; variable solar insolation; three-phase induction motor load; unity power factor injection; reactive power injection control; unbalanced current injection; decoupled controller; single-phase PV inverter; residential feeder; single-phase photovoltaics; modified second-order generalised integrator; voltage regulator

Subjects: Voltage control; Power and energy control; Power system control; Solar power stations and photovoltaic power systems; DC-AC power convertors (invertors); Power electronics, supply and supervisory circuits; Asynchronous machines; Control of electric power systems; Current control

References

    1. 1)
      • 16. Echavarria, R., Claudio, A., Cotorogea, M.: ‘Analysis, design, and implementation of a fast on-load tap changing regulator’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 527533.
    2. 2)
      • 8. Bahrani, B., Rufer, A., Kenzelmann, S., et al: ‘Vector control of single-phase voltage source converters based on fictive axis emulation’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 831840.
    3. 3)
      • 14. De Brabandere, K., Loix, T., Engelen, K., et al: ‘Design and operation of a phase-locked loop with Kalman estimator-based filter for single-phase applications’. Proc. of IEEE Industrial Electronics Society Conf., Paris, November 2006, pp. 525530.
    4. 4)
      • 3. Rahim, N.A., Chaniago, K., Selvaraj, J.: ‘Single-phase seven-level grid connected inverter for photovoltaic system’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 24352443.
    5. 5)
      • 20. Bollen, M.H.J.: ‘Definitions of voltage unbalance’, IEEE Power Eng. Rev., 2002, 22, (11), pp. 4950.
    6. 6)
      • 25. Subudhi, B., Pradhan, R.: ‘A comparative study on maximum power point tracking techniques for photovoltaic power systems’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 8998.
    7. 7)
      • 28. Bajracharya, C., Molinas, M., Suul, J.A., et al: ‘Understanding of tuning techniques of converter controllers for VSC-HVDC’. Nordic Workshop on Power and Industrial Electronics, June 2008.
    8. 8)
      • 19. Fairley, P.: ‘How rooftop solar can stabilize the grid’ following Germany's lead, California gives advanced inverters a bigger role in the grid’, IEEE Spectr., 2015http://spectrum.ieee.org/green-tech/solar/how-rooftop-solar-can-stabilize-the-grid.
    9. 9)
      • 9. Dong, D., Thacker, T., Burgos, R., et al: ‘On zero steady-state error voltage control of single phase PWM inverters with different load types’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 32853297.
    10. 10)
      • 12. Zhang, R., Cardinal, M., Szczesny, P., et al: ‘A grid simulator with control of single-phase power converters in D-Q rotating frame’. Proc.33rd IEEEPESC, 2002, pp. 14311436.
    11. 11)
      • 24. Sandia National Laboratories uses Real-Time Simulation to Shed Light on the use of Photovoltaic Distributed Generation in Hawaii. https://au.mathworks.com/company/user_stories/sandia-national-laboratories-simulates-hawaii-microgrid-and-photovoltaic-systems.html.
    12. 12)
      • 6. Mattavelli, P.: ‘An Improved deadbeat control for UPS using disturbance observers’, IEEE Trans. Ind. Electron., 2005, 52, (1), pp. 206212.
    13. 13)
      • 2. Wu, T.-F., Chang, C.-H., Lin, L.-C., et al: ‘Power loss comparison of single- and two-stage grid connected photovoltaic systems’, IEEE trans. Energy Convers., 2011, 26, (2), pp. 707715.
    14. 14)
      • 1. Masson, G., Latour, M., Rekinger, M., et al: ‘Global market outlook for photovoltaics 2013–2017’ (European Photovoltaic Industry Association, Brussels, Belgium, 2013).
    15. 15)
      • 27. Mishra, S., Achary, B.S.: ‘A novel controller for a grid connected single phase PV system and its real-time implementation’. Proc. of IEEE PES General Meeting, July 2014.
    16. 16)
      • 18. Noone, B.: ‘PV integration on Australian distribution networks’ (Australian PV Association, 2013). [Online]: http://apvi.org.au/wp-content/uploads/2013/12/APVA-PV-and-DNSP-Literature-review-September-2013.pdf.
    17. 17)
      • 7. Komurcugil, K.: ‘Rotating-sliding line based sliding model control for single phase UPS inverters’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 37193729.
    18. 18)
      • 4. Petrone, G., Spagnuolo, G., Vitelli, M.: ‘A multivariable perturb-and-observe maximum power point tracking technique applied to a single-stage photovoltaic inverter’, IEEE Trans. Ind. Electron., 2011, 589, (1), pp. 7684.
    19. 19)
      • 13. Saitou, M., Shimizu, T.: ‘Generalized theory of instantaneous active and reactive powers in single-phase circuits based on Hilbert transform’. Proc. 33rd IEEE PESC, June 2002, pp. 14191424.
    20. 20)
      • 22. Bhuvaneswari, G., Nair, M.G.: ‘Design, simulation, and analog circuit implementation of a three-phase shunt active filter using the Icosϕ Algorithm’, IEEE Trans. Power Del., 2008, 23, (2), pp. 12221235.
    21. 21)
      • 23. Bélanger, J., Venne, P., Paquin, J.-N.: ‘The what, where and why of real-time simulation’ (Planet RT, Opal-RT Technologies, 2010).
    22. 22)
      • 15. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: ‘A new single-phase PLL structure based on second order generalized integrator’. Proc. 37th IEEE PESC, June 2006, pp. 16.
    23. 23)
      • 10. Xu, S., Wang, J., Xu, J.: ‘A current decouplingparallel control strategy of single phase inverter with voltage and current dual closed loop feedback’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 13061313.
    24. 24)
      • 17. Chen, C.-S., Lin, C.-H., Hsieh, W.-L., et al: ‘Enhancement of PV penetration with DSTATCOM in taipower distribution system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15601567.
    25. 25)
      • 11. Monfared, M., Golestan, S., Guerrero, J.M.: ‘Analysis, design and experimental verification of a synchronous reference frame voltage control for single-phase inverters’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 258269.
    26. 26)
      • 26. Datasheet of 16-Bit Digital Signal Controllers (up to 128 KB Flash and 16 K SRAM) with Motor Control PWM and Advanced Analog processing. http://ww1.microchip.com/downloads/en/DeviceDoc/70291G.pdf.
    27. 27)
      • 21. Kabir, M.N., Mishra, Y., Ledwich, G., et al: ‘Coordinated control of grid connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder’, IEEE Trans. Ind. Informat., 2014, 10 (2), pp. 967977.
    28. 28)
      • 5. Alajmi, B.N., Ahmed, K.H., Adam, G.P., et al: ‘Single-phase single-stage transformer less grid-connected PV system’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26642676.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0100
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0100
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading