access icon free Experimental analysis of impact of maximum power point tracking methods on energy efficiency for small-scale wind energy conversion system

The power control of small-scale wind energy conversion system is usually limited by the sluggish mechanical dynamic. Aiming at highlighting this phenomenon, this article introduces a small-scale wind energy conversion system using the permanent magnet synchronous machine as generator to validate different combinations of control strategy resulting from four different maximum power point tracking (MPPT) methods with hysteresis control: one indirect MPPT method based on a look-up table and three direct methods based on perturb and observe relationship. Following two ideal wind speed profiles, a real rapid wind speed profile and using a test bench emulating a small-scale wind turbine, the MPPT methods are compared and analysed based on experimental results. The indirect method operates with the best MPPT performances for all three wind speed profiles while requiring accurate knowledge of the controlled system. The direct methods operate with low MPPT performance under rapid variation of wind speed and the superiority of variable step size is not significant since the dynamic process of the perturbation strongly weakens the effect of MPPT algorithm.

Inspec keywords: direct energy conversion; power generation control; machine control; permanent magnet machines; synchronous machines; maximum power point trackers; wind turbines; energy conservation

Other keywords: look-up table; small-scale wind energy conversion system; energy efficiency; indirect MPPT method; perturb and observe relationship; permanent magnet synchronous machine; ideal wind speed profiles; real rapid wind speed profile; variable step size; maximum power point tracking methods; hysteresis control; wind turbine

Subjects: Energy conservation; Wind power plants; Other direct energy conversion; Control of electric power systems; DC-DC power convertors; Synchronous machines

References

    1. 1)
      • 22. Bravo Cuesta, A., Javier Gomez-Gil, F., Vicente Martín Fraile, J., et al: ‘Feasibility of a simple small wind turbine with variable-speed regulation made of commercial components’, Energies, 2013, 6, pp. 33733391.
    2. 2)
      • 16. Tung-Sheng, Z., Jian-Liung, C., Shi-Jaw, C., et al: ‘Design of a chaos synchronisation-based maximum power tracking controller for a wind-energy conversion system’, IETRenew Power Gener, 2014, 8, pp. 590597.
    3. 3)
      • 12. Tran, D.H., Sareni, B., Roboam, X., et al: ‘Integrated optimal design of a passive wind turbine system: an experimental validation’, IEEE Trans. Sustain. Energy, 2010, 1, (1), pp. 4856.
    4. 4)
      • 2. Carbon Trust: ‘Small-scale wind energy: policy insights and practical guidance’ ( The Carbon Trust, 2008).
    5. 5)
      • 11. Al-Ghossini, H., Liu, H.L., Locment, F., et al: ‘Estimation of speed rotation for MPPT used by small scale wind generator integrated in DC microgrid’. 40th Annual Conf. of the IEEE Industrial Electronics Society, 2014, pp. 16.
    6. 6)
      • 18. Wu, J.C., Wang, Y.H.: ‘Power conversion interface for small-capacity wind power generation system’, IET Gener. Transm. Distrib., 2014, 8, pp. 689696.
    7. 7)
      • 3. ‘American Wind Energy Association’, accessed December 2013 http://www.awea.org.
    8. 8)
      • 7. Linus, R.M., Damodharan, P.: ‘Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems’, IET Renew. Power Gener., 2015, 9, pp. 682689.
    9. 9)
      • 9. Liu, H.L., Locment, F., Sechilariu, M.: ‘Maximum power point tracking method for small scale wind generator experimental validation’. SICE 2015 54th Annual Conf., 2015, pp. 864869.
    10. 10)
      • 20. Urtasun, A., Sanchis, P., Marroyo, L.: ‘Small wind turbine sensorless MPPT: robustness analysis and lossless approach’, Ind. Appl., 2014, 50, pp. 41134121.
    11. 11)
      • 4. Abdullah, M.A., Yatim, A.H.M., Tan, C.W., et al: ‘A review of maximum power point tracking algorithms for wind energy systems’, Renew. Sustain. Energy Rev., 2012, 16, pp. 32203227.
    12. 12)
      • 5. Park, Y.S., Jang, S.M., Koo, M.M., et al: ‘Comparative investigation on integrated system of permanent magnet synchronous generator and power converter based on machine topology for small-scale wind power application’, Magnetics, 2013, 49, pp. 38463849.
    13. 13)
      • 19. Urtasun, A., Sanchis, P., San Martín, I., et al: ‘Modeling of small wind turbines based on PMSG with diode-bridge for sensorless maximum power tracking’, Renew. Energy, 2013, 55, pp. 138149.
    14. 14)
      • 6. Rahim, A.H.M.A.: ‘Optimum relation based maximum power point tracking of a PMSG wind generator through converter controls’. Power Electronics, Machines and Drives (PEMD 2014), 7th IET Int. Conf., 2014, pp. 14.
    15. 15)
      • 8. Vijayakumar, K., Kumaresan, N., Ammasaigounde, N.: ‘Speed sensor-less maximum power point tracking and constant output power operation of wind-driven wound rotor induction generators’, IET Power Electr., 2015, 8, pp. 3346.
    16. 16)
      • 14. Qi, Z., Lin, E.: ‘Integrated power control for small wind power system’, Power Sources, 2012, 217, pp. 322328.
    17. 17)
      • 13. Daili, Y., Gaubert, J.P., Rahmani, L.: ‘Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors’, Energy Convers. Manage., 2015, 97, pp. 298306.
    18. 18)
      • 15. Kortabarria, I., Andreu, J., Martínez de Alegría, I., et al: ‘A novel adaptative maximum power point tracking algorithm for small wind turbines’, Renew. Energy, 2014, 63, pp. 785796.
    19. 19)
      • 26. Houssamo, I., Locment, F., Sechilariu, M.: ‘Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems’, Electr. Power Energy Syst., 2013, 46, pp. 98107.
    20. 20)
      • 21. Zhao, H., Wu, Q., Nygaard Rasmussen, C., et al: ‘L1 adaptive speed control of a small wind energy conversion system for maximum power point tracking’, Energy Convers., 2014, 29, pp. 576584.
    21. 21)
      • 10. Al-Ghossini, H., Locment, F., Sechilariu, M.: ‘Experimental comparison of small wind turbine vector control with and without position sensor—extended Kalman filter application’. 15th European Conf. on Power Electronics and Applications, 2013, pp. 19.
    22. 22)
      • 25. Houssamo, I., Locment, F., Sechilariu, M.: ‘Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms’, Renew. Energy, 2010, 35, pp. 23812387.
    23. 23)
      • 17. Dalala, Z.M., Ullah Zahid, Z., Lai, J.S.: ‘New overall control strategy for small-scale WECS in MPPT and stall regions with mode transfer control’, Energy Convers., 2013, 28, pp. 10821092.
    24. 24)
      • 23. Lee, C.Y., Chen, P.H., Shen, Y.X.: ‘Maximum power point tracking (MPPT) system of small wind power generator using RBFNN approach’, Expert Syst. Appl., 2011, 38, pp. 1205812065.
    25. 25)
      • 28. Mohseni, M., Islam, S.M., Masoum, M.A.S.: ‘Enhanced hysteresis-based current regulators in vector control of DFIG wind generators power electronics’, Power Electr., 2011, 26, pp. 223234.
    26. 26)
      • 27. Narayana, M., Putrus, G.A., Jovanovic, M., et al: ‘Generic maximum power point tracking controller for small-scale wind turbines’, Renew. Energy, 2012, 44, pp. 7279.
    27. 27)
      • 24. Nan Yu, K., Kang Liao, C.: ‘Applying novel fractional order incremental conductance algorithm to design and study the maximum power tracking of small wind power systems’, J. Appl. Res. Technol., 2015, 13, pp. 238244.
    28. 28)
      • 1. Orlando, N.A., Liserre, M., Mastromauro, R.A., et al: ‘A survey of control issues in PMSG-based small wind-generator systems’, Ind. Inf., 2013, 9, pp. 12111221.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0083
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading