access icon free Smoothing of wind power using flywheel energy storage system

Flywheel systems are quick acting energy storage that enable smoothing of a wind turbine output to ensure a controllable power dispatch. The effectiveness of a flywheel depends on how well it can be controlled to respond to fluctuating power output from intermittent sources. A quadratic Lyapunov function based non-linear controller is proposed which is designed based on an implicit understanding of the system including its inherent nonlinearities. Two different configurations of flywheel designs have been studied. The controller ensures asymptotic stability of the system as well as obtaining a better and more reliable performance than linear proportional–integral controllers in tracking rapid changes in power references. A further benefit is that the tuning of the proposed controller remains unaffected by changes in the system parameter and operating conditions. The efficacy of the algorithm is verified using non-linear time-domain simulation in MATLAB.

Inspec keywords: Lyapunov methods; flywheels; power generation dispatch; power generation control; nonlinear control systems; time-domain analysis; wind power plants; asymptotic stability; wind turbines; control system synthesis

Other keywords: flywheel design; system asymptotic stability; wind power smoothing; power reference; nonlinear time-domain simulation; flywheel energy storage system; wind turbine smoothing; quadratic Lyapunov function based nonlinear controller; power dispatch

Subjects: Mathematical analysis; Mathematical analysis; Power system management, operation and economics; Other energy storage; Control of electric power systems; Nonlinear control systems; Stability in control theory; Control system analysis and synthesis methods; Wind power plants

References

    1. 1)
      • 30. Mei, F., Pal, B.: ‘Modal analysis of grid-connected doubly fed induction generators’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 728736.
    2. 2)
      • 6. Luo, C., Banakar, H., Shen, B., et al: ‘Strategies to smooth wind power fluctuations of wind turbine generator’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 341349.
    3. 3)
      • 20. Suvire, G.O., Mercado, P.E.: ‘Active power control of a flywheel energy storage system for wind energy applications’, IET Renew. Power Gener., 2012, 6, (1), pp. 916.
    4. 4)
      • 11. Ngamroo, I., Karaipoom, T.: ‘Cooperative control of SFCL and SMES for enhancing fault ride through capability and smoothing power fluctuation of DFIG wind farm’, IEEE Trans. Appl. Supercond., 2014, 24, (5), pp. 14.
    5. 5)
      • 3. Vafakhah, B., Masiala, M., Salmon, J., et al: ‘Emulation of flywheel energy storage systems with a PMDC machine’. 18th Int. Conf. on Electrical Machines, 2008, ICEM 2008, 6–9 September 2008, pp. 16.
    6. 6)
      • 28. Ackermann, T.: ‘Wind power in power systems’ (John Wiley & Sons Inc., 2005), pp. 19.
    7. 7)
      • 13. Yang, T.-C.: ‘Initial study of using rechargeable batteries in wind power generation with variable speed induction generators’, IET Renew. Power Gener., 2008, 2, (2), pp. 89101.
    8. 8)
      • 24. Liu, Z.Z., Luo, F.L., Rashid, M.H.: ‘Nonlinear speed controllers for series DC motor’. Proc. of the IEEE Int. Conf. on Power Electronics and Drive Systems, 1999, PEDS ‘99, 1999, vol. 1, pp. 333338.
    9. 9)
      • 23. Chaouch, S., Nait­Said, M.S.: ‘Backstepping control design for position and speed tracking of DC motors’, Asian J. Inf. Technol., 2006, 5, pp. 13671372.
    10. 10)
      • 32. Anaya-Lara, O., Jenkins, N., Ekanayake, J., et al: ‘Wind energy generation modelling and control’ (John Wiley & Sons Ltd., 2009), pp. 6569.
    11. 11)
      • 14. Li, K., Xu, H., Ma, Q., et al: ‘Hierarchy control of power quality for wind – battery energy storage system’, IET Power Electron., 2014, 7, (8), pp. 21232132.
    12. 12)
      • 15. Lee, H.-I., Ji, K.-H., Yoo, E.-J., et al: ‘Design of a micro flywheel energy storage system including power converter’. IEEE Region 10 Conf. in TENCON, 23–26 January 2009, pp. 16.
    13. 13)
      • 4. Gurumurthy, S.R., Agarwal, V., Sharma, A.: ‘Optimal energy harvesting from a high-speed brushless DC generator-based flywheel energy storage system’, IET Electr. Power Appl., 2013, 7, (9), pp. 693700.
    14. 14)
      • 26. Gayathri, N.S., Jain, D., Jain, R., et al: ‘Sizing of a generic hybrid energy storage system for power smoothing of a wind generator’. IEEE Power & Energy Society General Meeting, 26–30 July 2015, pp. 15.
    15. 15)
      • 31. Golnaraghi, F., Kuo, B.C.: ‘Automatic control systems’ (John Wiley & Sons Ltd., 2010, 9th edn.), pp. 198203.
    16. 16)
      • 17. Iglesias, I.J., Garcia-Tabares, L., Agudo, A., et al: ‘Design and simulation of a stand-alone wind-diesel generator with a flywheel energy storage system to supply the required active and reactive power’. IEEE 31st Annual Power Electronics Specialists Conf., 2000, 2000, vol. 3, pp. 13811386.
    17. 17)
      • 1. Carnegie, R., Gotham, D., Nderitu, D., et al: ‘Utility scale energy storage systems – benefits, applications, and technologies’. State Utility Forecasting Group June 2013 – source Internet.
    18. 18)
      • 33. Zhou, J., Wang, Y., Zhou, R.: ‘Adaptive backstepping control of separately excited DC motor with uncertainties’. Proc. of Int. Conf. on Power System Technology-Power Control 2000, 2000, vol. 1, pp. 9196.
    19. 19)
      • 8. Xu, G., Xu, L., Morrow, D., et al: ‘Coordinated DC voltage control of wind turbine with embedded energy storage system’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10361045.
    20. 20)
      • 21. Taj, T.A., Hasanien, H.M., Alolah, A.I., et al: ‘Transient stability enhancement of a grid-connected wind farm using an adaptive neuro-fuzzy controlled-flywheel energy storage system’, IET Renew. Power Gener., 2015, 9, (7), pp. 792800.
    21. 21)
      • 25. Wai, R.J., Lin, F.J., Hsu, S.P.: ‘Intelligent backstepping control for linear induction motor drive’, IEE Proc.-Control Theory Appl., 2001, 148, (3), pp. 193202.
    22. 22)
      • 27. Slotine, J.J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    23. 23)
      • 29. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics: converters, applications, and design’ (John Wiley and Sons, 2002, 3rd edn.).
    24. 24)
      • 12. Lin, J., Sun, Y., Song, Y., et al: ‘Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 379392.
    25. 25)
      • 19. Itoh, J.-I., Tanaka, K., Saiki, Y., et al: ‘Design and experimental evaluation of the flywheel system for power levelling’. 39th Annual Conf. of the IEEE in Industrial Electronics Society, 10–13 November 2013, pp. 67036708.
    26. 26)
      • 16. Bornemann, H.J., Sander, M.: ‘Conceptual system design of a 5 MWh/100 MW superconducting flywheel energy storage plant for power utility applications’, IEEE Trans. Appl. Supercond., 1997, 7, (2), pp. 398401.
    27. 27)
      • 7. Howlader, A.M., Urasaki, N., Saber, A.Y.: ‘Control strategies for wind-farm-based smart grid system’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35913601.
    28. 28)
      • 18. Anonymous, (2014, Oct), Vyconenergy. Available at: http://www.vyconenergy.com, accessed 15 October 2014.
    29. 29)
      • 22. Milivojevic, N., Krishnamurthy, M., Emadi, A., et al: ‘Theory and implementation of a simple digital control strategy for brushless DC generators’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 33453356.
    30. 30)
      • 2. Sebastián, R., Peña Alzola, R.: ‘Flywheel energy storage systems: review and simulation for an isolated wind power system’, Renew. Sustain. Energy Rev., 2012, 16, (9), pp. 68036813.
    31. 31)
      • 5. Xinxiu, Z., Jiancheng, F.: ‘Precise braking torque control for attitude control flywheel with small inductance brushless DC motor’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 53805390.
    32. 32)
      • 10. Luu, T., Nasiri, A.: ‘Power smoothing of doubly fed induction generator for wind turbine using ultracapacitors’. 36th Annual Conf. on IEEE Industrial Electronics Society IECON, 7–10 November 2010, pp. 32933298.
    33. 33)
      • 9. Xu, G., Xu, L., Morrow, D.J.: ‘Wind turbines with energy storage for power smoothing and FRT enhancement’. IEEE Power and Energy Society General Meeting, 2011, 24–29 July 2011, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0076
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading