access icon free Dimensioning methodology for energy storage devices and wave energy converters supplying isolated loads

One of the big issues ocean-wave energy faces nowadays is the oscillation of the generated power. Among others, energy storage is a solution that has been widely proposed and validated for an adequate grid or isolated load integration. However, the unpredictability of ocean waves may pose a challenge when specifying the energy storage system (ESS) technology and specifications, especially in the case of stand-alone operation. This study presents a suitable methodology for the design of a certain wave energy converter (WEC) and the calculation of a certain stochastic model of the latter necessary for the subsequent sizing of the ESS. As a result, the storage system is defined in terms of energy, power and type of technology for the specific WEC and chosen location. The problem is accomplished in this study describing systematically the method and solving a particular example of the design of a wave converter in the Gulf of Mexico.

Inspec keywords: ocean waves; direct energy conversion; stochastic processes; energy storage; power grids

Other keywords: stand-alone operation; IET research journal paper dimensioning methodology; energy storage system technology; submission template; wave energy converter; adequate grid integration; ocean-wave energy; stochastic model; ESS technology; isolated load integration; isolated load supply; energy storage device; Gulf of Mexico; WEC design

Subjects: Other direct energy conversion; Other topics in energy storage; Other energy storage; Probability theory, stochastic processes, and statistics; Other topics in statistics; Other topics in energy conversion

References

    1. 1)
      • 37. Deb, K.: ‘An efficient constraint handling method for genetic algorithms’, Comput. Methods Appl. Mech. Eng., 2000, 186, (2-4), pp. 311338.
    2. 2)
      • 29. ‘NDBC – Station 42001 (LLNR 1400) – MID GULF’. Available at http://www.ndbc.noaa.gov/station_page.php?station=42001, accessed January 2016.
    3. 3)
      • 14. Folley, M., Whittaker, T.: ‘The cost of water from an autonomous wave-powered desalination plant’, Renew. Energy, 2009, 34, (1), pp. 7581.
    4. 4)
      • 15. Chauhan, A., Saini, R.P.: ‘A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control’, Renew. Sustain. Energy Rev., 2014, 38, pp. 99120.
    5. 5)
      • 4. Lineweber, D., McNulty, S., Institute, E.P.R.: ‘The cost of power disturbances to industrial & digital economy companies’ (EPRI, California, USA, 2001).
    6. 6)
      • 8. Sabzehgar, R., Moallem, M.: ‘Modelling and control of a boost converter for irregular input sources’, IET Power Electron., 2012, 5, (6), pp. 702709.
    7. 7)
      • 36. Srinivas, N., Deb, K.: ‘Muiltiobjective optimization using nondominated sorting in genetic algorithms’, Evol. Comput., 1994, 2, pp. 221248.
    8. 8)
      • 34. Cândido, J.J., Justino, P.A.P.S.: ‘Modelling, control and Pontryagin maximum principle for a two-body wave energy device’, Renew. Energy, 2011, 36, pp. 15451557.
    9. 9)
      • 11. ‘APB-350 — Ocean Power Technologies’. Available at http://www.oceanpowertechnologies.com/apb-350/, accessed October 2015.
    10. 10)
      • 22. Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., et al: ‘A review of energy storage technologies for wind power applications’, Renew. Sustain. Energy Rev., 2012, 16, (4), pp. 21542171.
    11. 11)
      • 46. Reikard, G., Robertson, B., Bidlot, J.-R.: ‘Combining wave energy with wind and solar: short-term forecasting’, Renew. Energy, 2015, 81, pp. 442456.
    12. 12)
      • 49. Göteman, M., Engström, J., Eriksson, M., et al: ‘Optimizing wave energy parks with over 1000 interacting point-absorbers using an approximate analytical method’, Int. J. Mar. Energy, 2015, 10, pp. 113126.
    13. 13)
      • 42. Montoya Andrade, D.-E., de la Villa Jaén, A., García Santana, A.: ‘Considering linear generator copper losses on model predictive control for a point absorber wave energy converter’, Energy Convers. Manage., 2014, 78, pp. 173183.
    14. 14)
      • 6. Zhou, Z., Benbouzid, M., Frédéric Charpentier, J., et al: ‘A review of energy storage technologies for marine current energy systems’, Renew. Sustain. Energy Rev., 2013, 18, pp. 390400.
    15. 15)
      • 38. Longuet-Higgins, M.S.: ‘On the joint distribution of wave periods and amplitudes in a random wave field’, Proc. R. Soc. Lond. A, Math. Phys. Sci., 1983, 389, (1797), pp. 241258.
    16. 16)
      • 48. Jones, C.E., Finney, S.J., Parry, C.S.: ‘Regulating DC link voltage fluctuations on a grid connected wave power system using energy storage’. IET Conf. on Renewable Power Generation (RPG 2011), 2011, pp. 16.
    17. 17)
      • 31. Lafoz, M., Garcia-Tabares, L., Blanco, M.: ‘Energy management in solar photovoltaic plants based on ESS’. 2008 13th Int. Power Electronics and Motion Control Conf.’, 2008, pp. 24812486.
    18. 18)
      • 33. Olaya, S., Bourgeot, J.M., Benbouzid, M.E.H.: ‘Hydrodynamic coefficient computation for a partially submerged wave energy converter’, Ocean. Eng. IEEE J., 2014, PP, pp. 114.
    19. 19)
      • 1. Boström, C., Lejerskog, E., Stålberg, M., et al: ‘Experimental results of rectification and filtration from an offshore wave energy system’, Renew. Energy, 2009, 34, (5), pp. 13811387.
    20. 20)
      • 40. Korde, U.A.: ‘Preliminary consideration of energy storage requirements for sub-optimal reactive control of axisymmetric wave energy devices’, Annu. Rev. Control, 2015, 40, pp. 93101.
    21. 21)
      • 41. Lafoz, M., Blanco, M.: ‘Efficiency calculation of a direct-drive power take-off’. Proc. of the Ninth European Wave and Tidal Energy Conf., 2011, pp. 16.
    22. 22)
      • 19. Belmili, H., Haddadi, M., Bacha, S., et al: ‘Sizing stand-alone photovoltaic–wind hybrid system: techno-economic analysis and optimization’, Renew. Sustain. Energy Rev., 2014, 30, pp. 821832.
    23. 23)
      • 32. Blanco, M., Moreno-Torres, P., Lafoz, M., et al: ‘Design parameter analysis of point absorber WEC via an evolutionary-algorithm-based dimensioning tool’, Energies, 2015, 8, (10), pp. 1120311233.
    24. 24)
      • 5. Lafoz, M., Blanco, M., Ramirez, D.: ‘Grid connection for wave power farms’. Proc. of the 2011–14th European Conf. on Power Electronics and Applications (EPE 2011), 2011, pp. 110.
    25. 25)
      • 45. Hals, J., Falnes, J., Moan, T.: ‘A comparison of selected strategies for adaptive control of wave energy converters’, J. Offshore Mech. Arct. Eng., 2011, 133, p. 31101.
    26. 26)
      • 23. Tedeschi, E., Santos-Mugica, M.: ‘Modeling and control of a wave energy farm including energy storage for power quality enhancement: the bimep case study’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 14891497.
    27. 27)
      • 17. Tankari, M.A., Camara, M.B., Dakyo, B., et al: ‘Use of ultracapacitors and batteries for efficient energy management in wind–diesel hybrid system’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 414424.
    28. 28)
      • 3. Bhuiyan, F.A., Yazdani, A.: ‘Reliability assessment of a wind-power system with integrated energy storage’, IET Renew. Power Gener., 2010, 4, (3), pp. 211220.
    29. 29)
      • 2. Barton, J.P., Infield, D.G.: ‘A probabilistic method for calculating the usefulness of a store with finite energy capacity for smoothing electricity generation from wind and solar power’, J. Power Sources, 2006, 162, (2), pp. 943948.
    30. 30)
      • 16. Beltran, H., Bilbao, E., Belenguer, E., et al: ‘Evaluation of storage energy requirements for constant production in PV power plants’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 12251234.
    31. 31)
      • 25. Lafoz, M., Beloqui, L., Blanco, M., et al: ‘Dimensioning methodology for energy storage devices applied to wave energy converters’. OSES 2015: Offshore Energy & Storage Symp., 2015.
    32. 32)
      • 47. Moreno-Torres, P., Blanco, M., Navarro, G., et al: ‘Power smoothing system for wave energy converters by means of a supercapacitor-based energy storage system’. 17th European Conf. on Power Electronics and Applications (EPE'15-ECCE Europe, 2015.
    33. 33)
      • 28. Falnes, J.: ‘Ocean waves and oscillating systems: linear interactions including wave-energy extraction’ (Cambridge University Press, 2002).
    34. 34)
      • 26. Falcão, A.F., de, O.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918.
    35. 35)
      • 18. Kassem, A.M.: ‘Modelling and robust control design of a standalone wind-based energy storage generation unit powering an induction motor-variable-displacement pressure-compensated pump’, IET Renew. Power Gener., 2015, 10, (3), pp. 275286.
    36. 36)
      • 24. Serna, Á., Tadeo, F.: ‘Offshore hydrogen production from wave energy’, Int. J. Hydrog. Energy, 2014, 39, (3), pp. 15491557.
    37. 37)
      • 30. Gomes, R.P.F., Henriques, J.C.C., Gato, L.M.C., et al: ‘Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion’, Renew. Energy, 2012, 44, pp. 328339.
    38. 38)
      • 9. Brando, G., Dannier, A., Del Pizzo, A., et al: ‘Grid connection of wave energy converter in heaving mode operation by supercapacitor storage technology’, IET Renew. Power Gener., 2016, 10, (1), pp. 8897.
    39. 39)
      • 21. Domínguez-Navarro, J.A., Tedeschi, E.: ‘Evaluation of the fluid model approach for the sizing of energy storage in wave–wind energy systems’, Energies, 2016, 9, (3), p. 162.
    40. 40)
      • 27. Waters, R.: ‘Linear generator-based wave energy converter model with experimental verification and three loading strategies’, IET Renew. Power Gener., 2015, 10, (3), pp. 349359.
    41. 41)
      • 43. Bacelli, G., Ringwood, J.V.: ‘A geometric tool for the analysis of position and force constraints in wave energy converters’, Ocean. Eng., 2013, 65, pp. 1018.
    42. 42)
      • 39. Newman, J.N.: ‘Marine hydrodynamics’ (The MIT Press, London, UK, 1977).
    43. 43)
      • 10. Ran, L., Mueller, M.A., Ng, C., et al: ‘Power conversion and control for a linear direct drive permanent magnet generator for wave energyIET Renew. Power Gener., 2011, 5, (1), pp. 19.
    44. 44)
      • 20. Allan, R.N.: ‘Reliability evaluation of power systems’ (Springer, US, 2013).
    45. 45)
      • 44. Tedeschi, E., Molinas, M.: ‘Tunable control strategy for wave energy converters with limited power takeoff rating’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 38383846.
    46. 46)
      • 12. Meggitt, D., Gulli, T.: ‘An autonomous wave-powered energy system for Net-Pen Aquaculture’, in (EDs.): ‘World Aquaculture 2014’ (2014), pp. 3941.
    47. 47)
      • 35. Storn, R., Price, K.: ‘Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, J. Glob. Optim., 1997, 11, pp. 341359.
    48. 48)
      • 13. Masuda, Y.: ‘Wave-Activated Generator’. in Proceedings of the International Colloquium on the Exposition of the Oceans, 1971, pp 118.
    49. 49)
      • 7. Tedeschi, E., Sjolte, J., Molinas, M., et al: ‘Stochastic rating of storage systems in isolated networks with increasing wave energy penetration’, Energies, 2013, 6, (5), pp. 24812500.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0074
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0074
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading