access icon free Frequency regulation control strategy for PMSG wind-power generation system with flywheel energy storage unit

To enhance the frequency regulation capability of direct-drive permanent magnet synchronous generator (PMSG)-based wind-power generation system, the frequency regulation control strategy for wind-power system with flywheel energy storage unit (FESU) based on fuzzy proportional plus differential (PD) controller is proposed in this study. According to the mathematical model of PMSG-based wind-power generation system with FESU, the small-signal model of the whole system is deduced in detail. In addition, the eigenvalue loci of the system are investigated to obtain the appropriate ranges of FESU's PD controller parameters for ensuring the system stable operation. Meanwhile, the impact of system equivalent inertia and damping on system frequency stability is analysed. Furthermore, a fuzzy PD controller of FESU is designed to dynamically regulate the system equivalent inertia and damping, leading to improved grid frequency characteristics. Finally, simulation studies on a 2 MW PMSG-based wind-power generation system with 400 kW FESU verify the validity of the proposed control strategy, contributing to enhance the frequency stability of power grid.

Inspec keywords: control system synthesis; eigenvalues and eigenfunctions; power system stability; power generation control; fuzzy control; flywheels; PD control; wind power plants

Other keywords: frequency regulation control strategy; FESU; fuzzy PD controller; flywheel energy storage unit; PMSG wind-power generation system; direct-drive permanent magnet synchronous generator

Subjects: Linear algebra (numerical analysis); Stability in control theory; Linear algebra (numerical analysis); Wind power plants; Other energy storage; Fuzzy control; Control of electric power systems; Control system analysis and synthesis methods

References

    1. 1)
      • 20. Liu, S.L., Wen, J.Y.: ‘Optimized controller design of a FESS for power fluctuation smoothing of a wind farm’. Int. Conf. on Sustainable Power Generation and Supply, Hangzhou, China, 8–9 September 2012.
    2. 2)
      • 12. Lee, H., Shin, B.Y., Han, S., et al: ‘Compensation for the power fluctuation of the large scale wind farm using hybrid energy storage applications’, IEEE Trans. Appl. Supercond., 2012, 22, (3), p. 5701904.
    3. 3)
      • 15. Bolund, B., Bernhoff, H., Leijon, M.: ‘Flywheel energy and power storage systems’, Renew. Sustain. Energy Rev., 2007, 11, (2), pp. 235258.
    4. 4)
      • 1. Wang, J., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with volatile wind power generation’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13191327.
    5. 5)
      • 13. Suvire, G.O., Mercado, P.E.: ‘Active power control of a flywheel energy storage system for wind energy applications’, IET Renew. Power Gener., 2012, 6, (1), pp. 916.
    6. 6)
      • 21. Khalilian, M., Mokhtari, M., Nazarpour, D., et al: ‘Transient stability enhancement by DSSC with fuzzy supplementary controller’, J. Electr. Eng. Technol., 2010, 5, (3), pp. 415422.
    7. 7)
      • 6. Zhang, Z.-S., Sun, Y.-Z., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, (1), pp. 3847.
    8. 8)
      • 3. State Grid Corporation of China. GB/T19963-2011. Technical Stipulation for Connecting Wind Park to the Grid. Beijing: China Electric Power Press, 2011 (in Chinese).
    9. 9)
      • 7. Morren, J., de Haan, S.W.H., Kling, W.L., et al: ‘Wind turbines emulating Inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
    10. 10)
      • 19. Thatte, A.A., Zhang, F., Xie, L.: ‘Coordination of wind farms and flywheels for energy balancing and frequency regulation’. IEEE Power and Energy Society General Meeting, San Diego, CA, America, 24–29 July 2011.
    11. 11)
      • 22. Chen, J., Chen, J., Gong, C.: ‘New overall power control strategy for variable-speed fixed-pitch wind turbines within the whole wind velocity range’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26522660.
    12. 12)
      • 10. Lee, J., Jeong, S., Han, Y.H., et al: ‘Concept of cold energy storage for superconducting flywheel energy storage system’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 22212224.
    13. 13)
      • 18. Simoes, M.G., Bose, B.K., Spiegel, R.J.: ‘Fuzzy logic based intelligent control of a variable speed cage machine wind generation system’, IEEE Trans. Power Electron., 1997, 12, (1), pp. 8795.
    14. 14)
      • 11. Diaz-Gonzalez, F., Bianchi, F.D., Sumper, A., et al: ‘Control of a flywheel energy storage system for power smoothing in wind power plants’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 204214.
    15. 15)
      • 5. de Almeida, R.G., Pecas Lopes, J.A.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944950.
    16. 16)
      • 16. Sebastián, R., Peña Alzola, R.: ‘Flywheel energy storage systems: review and simulation for an isolated wind power system’, Renew. Sustain. Energy Rev., 2012, 16, (9), pp. 68036813.
    17. 17)
      • 2. Mauricio, J.M., Marano, A., Gomez-Expósito, A., et al: ‘Frequency regulation contribution through variable-speed wind energy conversion systems’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 173180.
    18. 18)
      • 8. Yuan, X., Li, Y.: ‘Control of variable pitch and variable speed direct-drive wind turbines in weak grid systems with active power balance’, IET Renew. Power Gener., 2014, 8, (2), pp. 119131.
    19. 19)
      • 4. Conroy, J.F., Watson, R.: ‘Frequency response capability of full converter wind turbine generators in comparison to conventional generation’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 649656.
    20. 20)
      • 14. Islam, F., Al-Durra, A., Muyeen, S.M.: ‘Smoothing of wind farm output by prediction and supervisory-control-unit-based FESS’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 925933.
    21. 21)
      • 9. Akagi, H., Sato, H.: ‘Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system’, IEEE Trans. Power Electron., 2002, 17, (1), pp. 109116.
    22. 22)
      • 17. Suvire, G.O., Molina, M.G., Mercado, P.E.: ‘Improving the integration of wind power generation into AC microgrids using flywheel energy storage’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19451954.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0047
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading