access icon free Direct drive wave energy array with offshore energy storage supplying off-grid residential load

Current developments in wave energy conversion have focused on locations where the wave energy resource is the highest; using large devices to generate hundreds of kilowatts of power. However, it is possible to generate power from low power waves using smaller wave energy devices. These lower rated wave energy converters can form arrays to supply power to remote coastal or island communities which are off-grid. This study introduces wave-to-wire modelling of wave energy arrays for off-grid systems using low power permanent-magnet linear generators (PMLGs). Offshore energy storage at the DC link is added to keep the voltage constant along with a current controller for the inverter in order to supply constant low harmonic power to the residential load connected off-grid. Simulation results produced in MATLAB/Simulink environment show that the wave energy array can generate power independently from the residential side by keeping the system stable using offshore storage. In addition, two different types of controllers for wave energy devices that use PMLGs are compared based on the power captured from the waves.

Inspec keywords: power grids; permanent magnet generators; offshore installations; linear motors; energy storage

Other keywords: direct drive wave energy array; residential load connected off-grid; power permanent-magnet linear generators; wave energy converters; inverter; DC link; current controller; offshore storage; MATLAB/Simulink environment; offshore energy storage supplying off-grid residential load

Subjects: a.c. machines; Other energy storage; Wave power; d.c. machines; Linear machines

References

    1. 1)
      • 7. Titah-Benbouzid, H., Benbouzid, M.: ‘Ocean wave energy extraction: up-to-date technologies review and evaluation’. Proc. of the 2014 IEEE PEAC, 2014, pp. 338342.
    2. 2)
      • 1. Kiprakis, A.E., Nambiar, A.J., Forehand, D., et al: ‘Modelling arrays of wave energy converters connected to weak rural electricity networks’. 2009 Int. Conf. on Sustainable Power Generation and Supply, 2009, pp. 17.
    3. 3)
      • 17. Annuar, A.Z., Macpherson, D.E., Forehand, D.I.M., et al: ‘Optimum power control for arrays of direct drive wave energy converters’. Sixth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2012), 2012, pp. 16.
    4. 4)
      • 23. MAXWELL TECHNOLOGIES’http://www.maxwell.com/, accessed November 2016.
    5. 5)
      • 3. Nie, Z., Xiao, X., Kang, Q., et al: ‘SMES-battery energy storage system for conditioning outputs from direct drive linear wave energy converters’, IEEE Trans. Appl. Supercond., 2013, 23, (3), p. 5000705.
    6. 6)
      • 18. Li, B., Macpherson, D.E., Shek, J.K.H.: ‘Direct drive wave energy converter control in irregular waves’. IET Conf. on Renewable Power Generation (RPG 2011), 2011, pp. 16.
    7. 7)
      • 20. Gan, L.K., Shek, J.K.H., Mueller, M.A.: ‘Modelling and experimentation of grid-forming inverters for standalone hybrid wind-battery systems’. 2015 Int. Conf. on Renewable Energy Research and Applications (ICRERA), 2015, pp. 449454.
    8. 8)
      • 13. Ringwood, J.V., Bacelli, G., Fusco, F.: ‘Energy-maximizing control of wave-energy converters: the development of control system technology to optimize their operation’, IEEE Control Syst., 2014, 34, (5), pp. 3055.
    9. 9)
      • 4. Di Noia, L.P., Del Pizzo, A., Brando, G., et al: ‘Grid connection of wave energy converter in heaving mode operation by supercapacitor storage technology’, IET Renew. Power Gener., 2016, 10, (1), pp. 8897.
    10. 10)
      • 14. Shek, J.K.H., Macpherson, D.E., Mueller, M.A., et al: ‘Reaction force control of a linear electrical generator for direct drive wave energy conversion’, IET Renew. Power Gener., 2007, 1, (1), pp. 1724.
    11. 11)
      • 22. Salter, S.H., Taylor, J.R.M., Caldwell, N.J.: ‘Power conversion mechanisms for wave energy’, Proc. Inst. Mech. Eng. M, 2002, 216, (1), pp. 127.
    12. 12)
      • 8. Forehand, D.I.M., Kiprakis, A.E., Nambiar, A.J., et al: ‘A fully coupled wave-to-wire model of an array of wave energy converters’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 118128.
    13. 13)
      • 24. Collin, A.J., Tsagarakis, G., Kiprakis, A.E., et al: ‘Development of low-voltage load models for the residential load sector’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21802188.
    14. 14)
      • 6. Mork, G., Barstow, S., Kabuth, A., et al: ‘Assessing the global wave energy potential’. 29th Int. Conf. on Ocean, Offshore and Arctic Engineering, ASME, 2010, vol3, pp. 447454.
    15. 15)
      • 2. Tedeschi, E., Santos-Mugica, M.: ‘Modeling and control of a wave energy farm including energy storage for power quality enhancement: the Bimep case study’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 14891497.
    16. 16)
      • 21. Macpherson, D.E., Mueller, M.A., Shek, J.K.H.: ‘Power conversion for wave energy applications’. Fifth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2010), 2010, pp. 16.
    17. 17)
      • 10. Wu, F., Zhang, X.-P., Ju, P., et al: ‘Modeling and control of AWS-based wave energy conversion system integrated into power grid’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11961204.
    18. 18)
      • 15. Rahm, M., Boström, C., Svensson, O., et al: ‘Offshore underwater substation for wave energy converter arrays’, IET Renew. Power Gener., 2010, 4, (6), pp. 602612.
    19. 19)
      • 16. Polinder, H., Slootweg, J.G., Hoeijmakers, M.J., et al: ‘Modeling of a linear pm machine including magnetic saturation and end effects: maximum force-to-current ratio’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 16811688.
    20. 20)
      • 19. Wu, B., Lang, Y., Zargari, N., et al: ‘Variable-speed wind energy systems with synchronous generators’, in Hanzo, L. (Ed): ‘Power Conversion and Control of Wind Energy Systems’ (John Wiley & Sons, Inc., 2011), pp. 275316.
    21. 21)
      • 11. Spooner, E., Tavner, P., Mueller, M.A., et al: ‘Vernier hybrid machines for compact drive applications’. Second IEE Int. Conf. on Power Electronics, Machines and Drives, 2004, pp. 452457.
    22. 22)
      • 9. Vining, A.J., Muetze, A.: ‘Linear generators for direct-drive ocean wave energy conversion’. 2007, pp. 798804.
    23. 23)
      • 12. Brooking, P.R.M., Mueller, M.A.: ‘Power conditioning of the output from a linear Vernier hybrid permanent magnet generator for use in direct drive wave energy converters’, IEE Proc.-Gener. Transm. Distrib., 2005, 152, (5), pp. 673681.
    24. 24)
      • 5. Gunn, K., Stock-Williams, C.: ‘Quantifying the global wave power resource’, Renew. Energy, 2012, 44, pp. 296304.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0032
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading