access icon free Design and implementation of a high-performance technique for tracking PV peak power

Most maximum power point tracking (MPPT) techniques based on sliding-mode control (SMC) use another method such as perturb and observe or incremental conductance (IncCond) to provide current or voltage reference which makes the system more complex. To reduce the complexity and to increase the photovoltaic (PV) array efficiency, a direct control high-performance MPPT based on improved SMC has been investigated in this study. Using two different step sizes can follow the PV peak power at different operating conditions with rapid convergence and greater accuracy. The new SMC-based MPPT designed for boost-type DC/DC converters is compared with a conventional and modified IncCond method, and to a classical SMC method which is very similar to that applied by Chu et al. The proposed PV-MPPT system is tested during a stringent profile of sunshine variation as recommended by the European Norm 50530, by simulation within MATLAB/SimulinkTM tools and verified by implementation using a test bench based on DS1104 R&D controller board. The obtained results are satisfactory and demonstrate that the new SMC can track the MPP quickly within 0.003 s and with good accuracy close to 99%.

Inspec keywords: variable structure systems; maximum power point trackers; photovoltaic power systems; power generation control

Other keywords: boost-type DC-DC converters; DS1104 R&D controller board; modified IncCond method; direct control high-performance MPPT; PV peak power; EN 50530; test bench; incremental conductance method; sunshine variation; maximum power point tracking technique; PV array efficiency; high-performance technique; Matlab-Simulink tools; SMC-based MPPT design; PV-MPPT system; perturb-and-observe method; SMC method; photovoltaic array efficiency; PV peak power tracking; improved SMC; complexity reduction; sliding-mode control

Subjects: Multivariable control systems; Control of electric power systems; Solar power stations and photovoltaic power systems; DC-DC power convertors

References

    1. 1)
      • 23. Keshri, R., Bertoluzzo, M., Buja, G.: ‘Integration of a photovoltaic panel with an electric city car’, Electr. Power Compon. Syst., 2014, 42, (5), pp. 481495.
    2. 2)
      • 16. Bianconi, E., Calvente, J., Giral, R., et al: ‘A fast current-based MPPT technique based on sliding mode control’. IEEE Int. Symp. on Industrial Electronics (ISIE), Gdansk, Poland, June 2011, pp. 5964.
    3. 3)
      • 2. Pallavee Bhatnagar, A., Nema, B.R.K.: ‘Conventional and global maximum power point tracking techniques in photovoltaic applications: a review’, J. Renew. Sustain. Energy, 2013, 5, (3), 032701; 10.1063/1.4803524.
    4. 4)
      • 8. Murtaza, A.F., Sher, H.A., Chiaberge, M., et al: ‘A novel hybrid MPPT technique for solar PV applications using perturb & observe and fractional open circuit voltage techniques’. 15th Int. Symp. on Mechatronika, Prague, Czech, December 2012, pp. 18.
    5. 5)
      • 11. Ishaque, K., Salam, Z., Amjad, M., et al: ‘An improved particle swarm optimization (PSO) based MPPT for PV with reduced steady state oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36273638.
    6. 6)
      • 15. Bianconi, E., Calvente, J., Giral, R., et al: ‘Perturb and observe MPPT algorithm with a current controller based on the sliding mode’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 346356.
    7. 7)
      • 27. Jubaer, A., Zainal, S.: ‘An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency’, Appl. Energy, 2015, 150, pp. 97108.
    8. 8)
      • 9. Schoeman, J.J., VanWyk, J.D.: ‘A simplified maximal power controller for terrestrial photovoltaic panel arrays’. Proc. 13th Annual IEEE Power Electron Specialists Conf., 1982, pp. 361367.
    9. 9)
      • 18. Bizon, N.: ‘Global extremum seeking control of the power generated by a photovoltaic array under partially shaded conditions’, Energy Convers. Manage., 2016, 109, pp. 7185.
    10. 10)
      • 5. Tey, K.S., Mekhilef, S.: ‘Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level’, Sol. Energy, 2014, 101, pp. 333342.
    11. 11)
      • 21. Nanou, S.I., Papathanassiou, S.A.: ‘Modeling of a PV system with grid code compatibility’, Electr. Power Syst. Res., 2014, 116, pp. 301310.
    12. 12)
      • 1. Taleb, M.: ‘Performance of a maximum power point tracker (MPPT) photovoltaic generator (PVG)’, Electr. Power Compon. Syst., 2007, 35, (4), pp. 367375.
    13. 13)
      • 10. Ben Salah, C., Ouali, M.: ‘Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems’, Electr. Power Syst. Res., 2011, 81, (1), pp. 4350.
    14. 14)
      • 20. Besheer, A.H., Kassem, A.M., Abdelaziz, A.Y.: ‘Single-diode model based photovoltaic module: analysis and comparison approach’, Electr. Power Compon. Syst., 2014, 42, (12), pp. 12891300.
    15. 15)
      • 3. Ghassami, A.A., Sadeghzadeh, S.M., Soleimani, A.: ‘A high performance maximum power point tracker for PV systems’, Int. J. Electr. Power Energy Syst., 2013, 53, (1), pp. 237243.
    16. 16)
      • 4. Dhar, S., Sridhar, R., Mathew, G.: ‘Implementation of PV cell based standalone solar power system employing incremental conductance MPPT algorithm’. IEEE Int. Conf. on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, March 2013, pp. 356361.
    17. 17)
      • 13. Mamarelis, E., Petrone, G., Spagnuolo, G.: ‘An hybrid digital–analog sliding mode controller for photovoltaic applications’, IEEE Trans. Ind. Inf., 2012, 9, (2), pp. 10941103.
    18. 18)
      • 25. Slotine, J.J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ 07632, 1991), p. 459.
    19. 19)
      • 26. Komurcugil, H.: ‘Adaptive terminal sliding-mode control strategy for DC–DC buck converters’, ISA Trans.., 2012, 51, (6), pp. 673681.
    20. 20)
      • 22. Yu, G.J., Jung, Y.S., Choi, J.Y., et al: ‘A novel two-mode MPPT control algorithm based on comparative study of existing algorithms’, Sol. Energy, 2004, 76, (4), pp. 455463.
    21. 21)
      • 14. Costabeber, A., Carraro, M., Zigliotto, M.: ‘Convergence analysis and tuning of a sliding-mode ripple-correlation MPPT’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 696706.
    22. 22)
      • 12. Chu, C.C., Chen, C.L.: ‘Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach’, Sol. Energy, 2009, 83, (8), pp. 13701378.
    23. 23)
      • 24. Radjai, T., Rahmani, L., Mekhilef, S., et al: ‘Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE’, Sol. Energy, 2014, 110, pp. 325337.
    24. 24)
      • 19. Ishaque, K., Salam, Z., Lauss, G.: ‘The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions’, Appl. Energy, 2014, 119, pp. 228236.
    25. 25)
      • 17. Guldemir, H.: ‘Sliding mode control of DC–DC boost converter’, J. Appl. Sci., 2005, 5, (3), pp. 588592.
    26. 26)
      • 6. Kollimalla, S.K., Mishra, M.K.: ‘A new adaptive P&O MPPT algorithm based on FSCC method for photovoltaic system’. Int. Conf. on Circuits, Power and Computing Technologies, ICCPCT, Nagercoil, India, March 2013, pp. 406411.
    27. 27)
      • 7. Yuvarajan, S., Xu, S.: ‘Photo-voltaic power converter with a simple maximum-power-point-tracker’. Int. Symp. on Circuits Systems, May 2003, vol. 3, pp. III-399III-402.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0023
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading