Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Active yaw control in a horizontal axis wind system without requiring wind direction measurement

This study presents an improved active yaw control technique for a horizontal-axis wind turbine that is driven by a full power converter system with maximum power point tracking control. The turbine is aligned to the wind direction through the error between the rotor speed determined by the optimal tip speed ratio and the real rotor speed commanded by the maximum power point tracking control. Thus, the implementation of the yaw control is not based on the measurement of the wind direction and therefore, it is not influenced by inaccuracies that may be caused by the vortex flow downstream of the blades. The proposed yaw control method is intended for large turbines, since larger increase in the generated electric energy can be attained. However, since it is cost-effective, it is affordable to be applied in low power wind systems. Selective simulation and experimental results are presented in order to demonstrate the effectiveness and the resulting improvements of the proposed control scheme. The simulation analysis is conducted in a large wind turbine with permanent magnet synchronous generator and the experimental verification in a low power real wind system with squirrel cage induction generator. However, it can also be applied to a doubly fed induction generator.

References

    1. 1)
      • 2. ‘Renewable energy and jobs’, by Intern. Renewable Energy Agency (IRENA)’, Annual Review 2015. Available at http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Jobs_Annual_Review_2015.pdf.
    2. 2)
      • 11. Shariatpanah, H., Fadaeinedjad, R., Rashidinejad, M.: ‘A new model for PMSG-based wind turbine with yaw control’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 929937.
    3. 3)
      • 13. Fleming, P.A., Gebraad, P.M.O., Churchfield, M.J., et al: ‘Using particle filters to track wind turbine wakes for improved wind plant controls’. Proc. in IEEE American Controls Conf. ACC'2014, 2014, pp. 37343741.
    4. 4)
      • 33. Risø National Laboratory byPedersen, T.F., Gjerding, S., Ingham, P., et al: ‘Wind turbine power performance verification in complex terrain and wind farms’, April. 2002.
    5. 5)
      • 38. Polinder, H., van der Pijl, F.A., de Vilder, G.-J., et al: ‘Comparison of direct-driven and geared generator concepts for wind turbines’, IEEE Trans. Energy Conv., 2006, 21, (3), pp. 725733.
    6. 6)
      • 9. Farret, F.A., Pfitscher, L.L., Bernardon, D.P.: ‘Sensorless active yaw control for wind turbines’. Proc. Int. Conf. IECON'01, pp. 13701375.
    7. 7)
      • 18. Hossain, M.Z., Hirahara, H., Nonomura, Y., et al: ‘The wake structure in a 2D grid installation of the horizontal axis micro wind turbines’, Renew. Energy, 2007, 32, pp. 22472267.
    8. 8)
      • 37. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    9. 9)
      • 16. Hure, N., Turnar, R., Vašak, M., et al: ‘Optimal wind turbine yaw control supported with very short-term wind predictions’. Proc. in IEEE Ind. Tech. Conf. ICIT'2015, 2015, pp. 385391.
    10. 10)
      • 19. Schreck, S.J., Robinson, M.C.: ‘Horizontal axis wind turbine blade aerodynamics in experiments and modeling’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 6170.
    11. 11)
      • 30. Mesemanolis, A., Mademlis, C.: ‘Combined maximum power point and yaw control strategy for a horizontal axis wind turbine’. Proc. Int. Conf. on Electrical Machines, ICEM'2014, Berlin, Germany, September 2014.
    12. 12)
      • 15. Moskalenko, N.S., Rudion, K., Styczynski, Z.A.: ‘Wind farm operation planning using optimal yaw angle pattern (OYAP)’. Proc. in IEEE Conf. PowerTech'2011, 2011, pp. 16.
    13. 13)
      • 14. Farret, F.A., Pfitscher, L.L., Bernardon, D.P.: ‘Sensorless active yaw control for wind turbines’. Proc. in IEEE Ind. Electronics Conf. IECON'2001, December 2001, pp. 13701375.
    14. 14)
      • 29. Bianchi, F.D., De Battista, H., Mantz, R.J.: ‘Wind turbine control systems’ (Springer-Verlag, London, 2007).
    15. 15)
      • 28. NREL/CO-5000-57339 byScholbrock, A., Fleming, P., Fingersh, L.J., et al: ‘Field testing Lidar based feed-forward controls on the NREL controls advanced research turbine’, January2013. Available at http://www.nrel.gov/docs/fy15osti/63202.pdf.
    16. 16)
      • 20. Chen, J., Chen, J., Gong, C.: ‘On optimizing the aerodynamic load acting on the turbine shaft of MPSG-based direct-drive wind energy conversion system’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 40224031.
    17. 17)
      • 10. Fadaeinedjad, R., Moschopoulos, G., Moallem, M.: ‘The impact of tower shadow, yaw error, and wind shears on power quality in a wind-diesel system’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 102111.
    18. 18)
      • 35. Mesemanolis, A., Mademlis, C., Kioskeridis, I.: ‘Optimal efficiency control strategy in wind energy conversion system with induction generator’, IEEE J. Emerg. Sel. Top. Power Electron., 2013, 1, (4), pp. 238246.
    19. 19)
      • 4. Mirecki, A., Roboam, X., Richardeau, F.: ‘Architecture complexity and energy efficiency of small wind turbines’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 660670.
    20. 20)
      • 23. Mamidipudi, P., Dakin, E., Hopkins, A., et al: ‘Yaw control: The forgotten controls problem’. Proc. Int. Conf. EWEA'2011.
    21. 21)
      • 5. Datta, R., Ranganathan, V.T.: ‘A method of tracking the peak power points for a variable speed wind energy conversion system’, IEEE Trans. Energy Convers., 2003, 18, (1), pp. 163168.
    22. 22)
      • 27. Pena, A., Hasager, C.B., Gryning, S.-E., et al: ‘Offshore wind profiling using Lidar measurements’, Wind Energy, 2008, 12, pp. 105124.
    23. 23)
      • 1. Hau, E.: ‘Wind turbines, fundamentals, technologies, application, economics’ (Springer-Verlag, Berlin, 2006).
    24. 24)
      • 21. Pedersen, T.F., Gottschall, J., Kristoffersen, J.R., et al: ‘Yawing and performance of an offshore wind farm’. Proc. Int. Conf. EWEA'2011,.
    25. 25)
      • 6. Galdi, V., Piccolo, A., Siano, P.: ‘Designing an adaptive fuzzy controller for maximum wind energy extraction’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 559569.
    26. 26)
      • 34. Madsen, H.A.: ‘Yaw simulation using a 3D actuator disc model coupled to the aerolastic code HAWC’. Proc. 13th IEA Symposium on the Aerodynamics of the Wind Turbines, November 2000, pp. 133144.
    27. 27)
      • 25. Kragh, K.A., Fleming, P.A., Scholbrock, A.K.: ‘Increased power capture by rotor speed-dependent yaw control of wind turbines’, J. Sol. Energy Eng., 2013, 135, (3).
    28. 28)
      • 22. Højstrup, J., Nielsen, J.D., Hansen, J.K., et al: ‘Maximize energy production by minimizing yaw misalignment. Results from large scale field deployment of spinner anemometer’. Proc. Int. Conf. EWEA'2013.
    29. 29)
      • 7. Pucci, M., Cirrincione, M.: ‘Neural MPPT control of generators with induction machines without speed sensors’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 3747.
    30. 30)
      • 12. Gebraad, P.M.O., Teeuwisse, F.W., van Wingerden, J.W., et al: ‘A data-driven model for wind plant power optimization by yaw control’. Proc. in IEEE American Controls Conf. ACC'2014, 2014, pp. 31283134.
    31. 31)
      • 26. NREL/CP-500-32494 bySmith, B., Link, H., Randall, G., et al: ‘Applicability of nacelle anemometer measurements for use in turbine power performance tests’. May 2002. Available at http://www.nrel.gov/docs/fy02osti/32494.pdf.
    32. 32)
      • 24. NREL/CO-5000-63202 byScholbrock, A., Fleming, P., Wright, A., et al: ‘Field test results from Lidar measured yaw control for improved yaw alignment with the NREL controls advanced research turbine’, December2014. Available at http://www.nrel.gov/docs/fy15osti/63202.pdf.
    33. 33)
      • 17. Whale, J., Anderson, C.G., Bareiss, R., et al: ‘An experimental and numerical study of the vortex structure in the wake of a wind turbine’, J. Wind Eng. Ind. Aerodyn., 2000, (84), pp. 121.
    34. 34)
      • 32. Mesemanolis, A., Mademlis, C.: ‘Self-tuning maximum power point tracking control for wind generation systems’. Proc. Int. Conf. ICCEP'2013, June 2013, pp. 407413.
    35. 35)
      • 31. Spera, D.A., Editor: ‘Wind turbine technology, Fundamental concepts of wind turbine engineering’ (Asme Press, New York, 2009, 2nd edn.).
    36. 36)
      • 3. Burton, T., Jenkins, N., Sharpe, D., et al: ‘Wind energy handbook’ (John Wiley & Sons, Ltd, 2011).
    37. 37)
      • 36. Leithead, W.E., Connor, B.: ‘Control of variable speed wind turbines: design task’, Int. J. Control, 2000, 73, (13), pp. 11891212.
    38. 38)
      • 8. Chen, F., Yang, J.: ‘Fuzzy PID controller used in yaw system of wind turbine’. Proc. Int. Conf. PESA, 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0005
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address