Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhancing DFIG wind turbine during three-phase fault using parallel interleaved converters and dynamic resistor

Transient operations are very crucial for high power insulated-gate bipolar transistor modules, because high current and voltage are applied during this period for several microseconds. Therefore, the ability for doubly fed induction generator (DFIG) variable speed wind turbine power converters to withstand abnormal conditions is strictly imperative in order to achieve its lifetime specifications and also fulfil the grid codes. This study presents a new control scheme for DFIG wind turbine having parallel interleaved converters (PIC) configuration and a series dynamic braking resistor (SDBR) connected at its stator side. Interleaving the wind turbine converters in parallel configuration could help to increase the current capability, while the SDBR helps in post fault recovery of the wind turbine. The coordinated control analysis of the scheme was implemented in power system computer aided design and electromagnetic transient including DC simulation environment for a severe three-phase to ground fault. Results obtained were compared with the conventional DC chopper and crowbar rotor circuit protection scheme for the wind turbine. A better performance of the wind turbine variables were achieved using the proposed control scheme of the PIC and SDBR because the space vector modulation of the PIC results in maximum value of the change in common mode voltage, leading to improved switched output voltage of the voltage source converter leg.

References

    1. 1)
      • 38. Zhang, D., Wang, F., Burgos, R., et al: ‘Impact of interleaving on AC passive components of paralleled three phase voltage source converters’, IEEE Trans. Power Electron., 2010, 46, (3), pp. 10421054.
    2. 2)
      • 12. Rodriguez, M., Abad, G., Sarasola, I., et al: ‘Crowbar control algorithms for doubly fed induction generator during voltage dips’. Presented at the 11th Eur. Conf. Power Electronics Application, Dresden, Germany, September 2005, pp. 110.
    3. 3)
      • 19. Ibrahim, A.O., Nguyen, T.H., Lee, D., et al: ‘Ride through strategy for DFIG wind turbine systems using dynamic voltage restorers’. Proc. IEEE-ECCE (Energy Conversion Congress and Exposition), California, USA, September 2009, pp. 16111618.
    4. 4)
      • 23. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
    5. 5)
      • 37. Asiminoaci, L., Aeloiza, E., Enjeti, P.N., et al: ‘Shunt active-power filter topology based on parallel interleaved inverters’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 11751189.
    6. 6)
      • 42. PSCAD/EMTDC Manual: Manitoba HVDC Research Center, 1994.
    7. 7)
      • 18. de Almeida, R.G., Lopez, J.A., Barreiros, J.A.L.: ‘Improving power system dynamics behavior through doubly fed induction machines controlled by static converter using fuzzy control’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19421950.
    8. 8)
      • 4. Patil, S.D.: ‘Improvement of power quality considering voltage stability in grid connected system by FACTS devices’, Int. J. Electr. Electron. Eng. (IJEEE), 2012, 1, (1), pp. 22315284.
    9. 9)
      • 39. Ma, K., Zhou, D., Blaabjerg, F.: ‘Evaluation and design tools for the reliability of wind power converter system’, J. Power Electron., 2015, 15, (5), pp. 11491157.
    10. 10)
      • 20. Wei, Q., Venayagamorthy, G.K., Harley, R.G.: ‘Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators’, IEEE Trans. Ind. Appl., 2009, 45, (1), pp. 98107.
    11. 11)
      • 9. Erlich, I., Wrede, H., Feltes, C.: ‘Dynamic behavior of DFIG-based wind turbine during grid faults’, IEEJ Trans. Ind. Appl., 2008, 128, (4), p. 396.
    12. 12)
      • 25. Yan, X., Venkataramanan, G., Wang, Y.: ‘Grid fault tolerant operation of DFIG wind turbine generator using a passive resistance network’. Proc. IEEE-ECCE (Energy Conversion Congress and Exposition), California, USA, September 2009, pp. 16111618.
    13. 13)
      • 15. Salles, M.B.C., Cardoso, J.R., Grilo, A.P., et al: ‘Control strategies of doubly fed induction generators to support grid voltage’. Proc. of IEEE Int. Electric Machines and Drives Conf. – IEMDC, Miami, FL, USA, May 2009, pp. 15511556.
    14. 14)
      • 14. Takahashi, R., Tamura, J., Futami, M., et al: ‘A new control method for wind energy conversion system using doubly fed synchronous generators’, IEEJ Trans. Power Energy, 2006, 126, (2), pp. 225235.
    15. 15)
      • 1. Suul, J.A., Molinas, M., Undeland, T.: ‘STATCOM–based indirect torque control of induction machines during voltage recovery after grid faults’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 12401250.
    16. 16)
      • 26. Petersson, A., Lundberg, S., Thiringer, T.: ‘A DFIG wind turbine ride through system influence on energy production’, Wind Energy J., 2005, 8, pp. 251263.
    17. 17)
      • 3. Muyeen, S.M., Takahashi, R., Ali, M.H., et al: ‘Transient stability augmentation of power systems including wind farms using ECS’, IEEE Tans. Power Syst., 2008, 23, (3), pp. 11791187.
    18. 18)
      • 16. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Comparative study between two protection schemes for DFIG-based wind generator’. Int. Conf. on Electrical Machines and Systems (ICEMS), Seoul, South Korea, October 2010, pp. 110.
    19. 19)
      • 29. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Comparative study on current and voltage controlled voltage source converter based variable speed wind generator’. Proc. of Int. Conf. on Electric Power and Energy Conversion Systems, Sharjah, UAE, 15-1 November 2011, pp. 17.
    20. 20)
      • 5. El-Sattar, A.A, Saad, N. H., Shams, El-Dein M.Z.: ‘Dynamic response of doubly fed induction generator variable speed wind turbine under fault’, Electr. Power Syst. Res., 2008, 78, 7 pp. 12401246.
    21. 21)
      • 6. Santos, S., Le, H.T.: ‘Fundamental time-domain wind turbine models for wind power studies’, Renew. Energy, 2007, 32, pp. 24362452.
    22. 22)
      • 35. Gohil, G., Bede, L., Teodorescu, R., et al: ‘An integrated inductor for parallel interleaved VSCs and PWM schemes for flux minimization’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 75347546.
    23. 23)
      • 22. Yang, J., Fletcher, E., O'Reilly, J.: ‘A series dynamic resistor based converter protection schemes for doubly fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    24. 24)
      • 8. Karim-Davijani, H., Sheikjoleslami, A., Livani, H., et al: ‘Fuzzy logic control of doubly fed induction generator wind turbine’, World Appl. Sci. J., 2009, 6, (4), pp. 499508.
    25. 25)
      • 28. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Effectiveness of current controlled voltage source converter excited DFIG for wind farm stabilization’, Electr. Power Compon. Syst. EPCS J. Taylor Francis Group Int., 2012, 40, pp. 556574.
    26. 26)
      • 24. Park, W., Sung, B.C., Park, J.W.: ‘The effect of SFCL on electric power grid with wind turbine generation system’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 11771181.
    27. 27)
      • 32. Mohan, N.: ‘First course on power electronics’ (MNPERE/Prentice-Hall, Englewood Cliffs, 2005).
    28. 28)
      • 40. Reigosa, P.D., Wu, R., Iannuzzo, F., et al: ‘Robustness of MW level IGBT modules against gate oscillations under short circuit events’, Microelectron. Reliab., 2015, 55, pp. 19501955.
    29. 29)
      • 36. Ueda, F., Matsui, K., Asao, M., et al: ‘Parallel connections of pulse width modulated inverters using current sharing reactors’, IEEE Trans. Power Electron., 1995, 10, (6), pp. 673679.
    30. 30)
      • 43. E.ON NETZ GmbH: ‘Grid connection regulation for high and extra high voltage’. 2006.
    31. 31)
      • 10. Sun, T., Chen, Z., Blaabjerg, F.: ‘Transient stability of DFIG wind turbines at an external short circuit fault’, Wind Energy J., 2005, 8, pp. 345360.
    32. 32)
      • 31. Muller, S., Deicke, M., Doncker, R.W.D.: ‘Doubly fed induction generator systems for wind turbine’, IEEE Ind. Appl. Mag., 2002, 8, (3), pp. 2633.
    33. 33)
      • 34. Stemmler, H., Geggenbach, P.: ‘Configurations of high power voltage source inverter drives’. Proc. of the 5th European Conf. on Power Electronics and Applications, Brighton, UK, 1993, 5, pp. 712.
    34. 34)
      • 11. Pannell, G., Atkinson, D.J., Zahawi, B.: ‘Minimum-threshold crowbar for a fault ride through grid code compliant DFIG wind turbine’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 750759.
    35. 35)
      • 2. Yu, J., Duan, X., Tang, Y., et al: ‘Control scheme studies of voltage source type superconducting magnetic energy storage (SMES) under asymmetrical voltage’, IEEE Trans. Appl. Supercond., 2002, 12, (1), pp. 750753.
    36. 36)
      • 27. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farm stabilization by using DFIG with current controlled voltage source converters taking grid codes into consideration’, IEEJ Trans. Power Energy, 2012, 132, (3), pp. 251259.
    37. 37)
      • 41. Nashed, M.N., Eskander, M.N.: ‘Comparing the quality of power generated from DFIG with different types of rotor converters’, J. Electromagn. Anal. Appl., 2012, 4, pp. 2129.
    38. 38)
      • 21. Causebrook, A., Atkinson, D.J., Jack, A.G.: ‘Fault ride through of large wind farms using series dynamic braking resistors’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 966975.
    39. 39)
      • 17. Awad, H., Svensson, J., Bollen, M.: ‘Mitigation of unbalanced voltage dips using static series compensator’, IEEE Trans. Power Electron., 2004, 19, pp. 837846.
    40. 40)
      • 30. Murphy, J., Turnbull, F.: ‘Power electronics control of AC motors’ (Pergamon, New York, 1988).
    41. 41)
      • 7. Chowdhury, B.H., Chellapilia, S.: ‘Doubly-fed induction generator control for variable speed wind power generation’, Electr. Power Syst. Res., 2006, 76, pp. 786800.
    42. 42)
      • 13. Yao, J., Li, H., Liao, Y., et al: ‘An improved control strategy of limiting the DC-link voltage fluctuation for a doubly fed induction wind generator’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 12051213.
    43. 43)
      • 33. Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral point clamped PWM inverter’, IEEE Trans. Ind. Appl., 1981, 17, pp. 518523.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0607
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0607
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address