Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms

This study focuses on approximating a reduced discrete probability distribution (RDPD) of wind power from the original discrete probability distribution (ODPD), consisting of a large number of observed original scenarios (OSs), to relieve the burden of solving stochastic programs of wind power generation. The proposed method, namely, the MMCC method, aims to achieve high approximation accuracy and computational efficiency by combining an improved moment-matching (MM) method with the clustering (C) method and the Cholesky decomposition (CD) method. First, the C method is used to reduce the number of OSs by minimising the space distance between the reduced scenarios (RSs) and the OSs. Next, the CD method is used to rectify the correlation of the RSs to satisfy that of the ODPD. Finally, the RS probabilities are optimally determined by the MM method in order to minimise the stochastic features (first four moments and correlation matrix) between the RDPD and the ODPD. Simulations of RDPD approximation for three wind farms with 10, 20, 40, 60, 80, and 100 scenarios were carried out using the Latin hypercube sampling, importance sampling, C, moment-matching-clustering (MMC), and MMCC methods. The results showed that the MMCC method exhibits the best performance in terms of capturing the features of the ODPD.

References

    1. 1)
      • 7. Soroudi, A., Rabiee, A.: ‘Optimal multi-area generation schedule considering renewable resources mix: a real-time approach’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 10111026.
    2. 2)
      • 28. Chow, C.K., Liu, C.N.: ‘Approximating discrete probability distributions with dependence trees’, IEEE Trans. Inf. Theory, 1968, IT-14, (3), pp. 462467.
    3. 3)
      • 37. Vattani, A.: ‘K-means requires exponentially many iterations even in the plane’, Discrete Comput. Geom., 2011, 45, pp. 596616.
    4. 4)
      • 32. Pappala, V.S., Erlich, I., Rohrig, K., et al: ‘A stochastic model for the optimal operation of a wind-thermal power system’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 940950.
    5. 5)
      • 18. Can, W., Zhao, X., Pinson, P., et al: ‘Optimal prediction intervals of wind power generation’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 11661174.
    6. 6)
      • 29. Gröwe-Kuska, N., Heitsch, H., Römisch, W.: ‘Scenario reduction and scenario tree construction for power management problems’. Proc. Int. Conf. Power Tech 2003 IEEE, Bologna, Italy, June 2003, pp. 2326.
    7. 7)
      • 36. Xu, D.B., Chen, Z.P., Yang, L.: ‘Scenario tree generation approaches using K-means and LP moment matching methods’, J. Comput. Appl. Math., 2012, 236, pp. 45614579.
    8. 8)
      • 16. Can, W., Zhao, X., Pinson, P., et al: ‘Probabilistic forecasting of wind power generation using extreme learning machine’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 10331044.
    9. 9)
      • 13. Mohammadi, S., Mozafari, B., Solymani, S., et al: ‘Stochastic scenario-based model and investigating size of energy storages for PEM-fuel cell unit commitment of micro-grid considering profitable strategies’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12281243.
    10. 10)
      • 35. Hochreiter, R., Pflug, G.C.: ‘Financial scenario generation for stochastic multi-stage decision processes as facility location problems’, Ann. Oper. Res., 2007, 152, pp. 257272.
    11. 11)
      • 17. Can, W., Zhao, X., Pinson, P.: ‘Direct interval forecasting of wind power’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48774878.
    12. 12)
      • 34. Høyland, K., Kaut, M., Wallace, S.W.: ‘A heuristic for moment-matching scenario generation’, Comput. Optim. Appl., 2003, 24, (2–3), pp. 169185.
    13. 13)
      • 20. Woods, M.J., Russell, C.J., Davy, R.J., et al: ‘Simulation of wind power at several locations using a measured time-series of wind speed’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 219226.
    14. 14)
      • 22. Billinton, R., Wangdee, W.: ‘Reliability-based transmission reinforcement planning associated with large-scale wind farms’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 3441.
    15. 15)
      • 9. Chen, Y., Wen, J.Y., Cheng, S.J.: ‘Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 294301.
    16. 16)
      • 12. Hashemi, S., Østergaard, J., Yang, G.Y.: ‘A scenario-based approach for energy storage capacity determination in LV grids with high PV penetration’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 15141522.
    17. 17)
      • 5. Li, J.H., Wen, J.Y., Cheng, S.J.: ‘Minimum energy storage for power system with high wind power penetration using p-efficient point theory’, Sci. China Inf. Sci., 2014, 57, pp. 128202:1128202:12.
    18. 18)
      • 21. Chen, P.Y., Pedersen, T., Jensen, B.B., et al: ‘ARIMA-based time series model of stochastic wind power generation’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 667676.
    19. 19)
      • 33. Ross, O.: ‘Interest rate scenario generation for stochastic programming’. PhD thesis, The Technical University of Denmark (DTU), 2007.
    20. 20)
      • 10. Yu, H., Chung, C.Y., Wong, K.P.: ‘Robust transmission network expansion planning method with Taguchi's orthogonal array testing’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 15731580.
    21. 21)
      • 2. Xiong, P., Jirutitijaroen, P.: ‘A stochastic optimization formulation of unit commitment with reliability constraints’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 22002208.
    22. 22)
      • 15. Cui, M.J., Ke, D.P., Sun, Y.Z., et al: ‘Wind power ramp event forecasting using a stochastic scenario generation method’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 422433.
    23. 23)
      • 30. Razali, N.M.M., Hashim, A.H.: ‘Backward reduction application for minimizing wind power scenarios in stochastic programming’. Proc. 4th Int. Conf. Power Engineering and Optimization Conf. (PEOCO 2010), Shah Alam, Selangor, Malaysia, June 2010, pp. 2324.
    24. 24)
      • 11. Lee, D., Lee, J., Baldick, R.: ‘Wind power scenario generation for stochastic wind power generation and transmission expansion planning’. Proc. Int. Conf. PES General Meeting – Conf. and Exposition, Maryland, US, July 2014, pp. 15.
    25. 25)
      • 40. Wang, Y., Guo, C.X., Wu, Q.H.: ‘Adaptive sequential importance sampling technique for short-term composite power system adequacy evaluation’, IET Gener. Transm. Distrib., 2014, 8, (4), pp. 730741.
    26. 26)
      • 3. Parvania, M., Fotuhi-Firuzabad, M.: ‘Demand response scheduling by stochastic SCUC’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8998.
    27. 27)
      • 19. Matevosyan, J., Söder, L.: ‘Minimization of imbalance cost trading wind power on the short-term power market’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13961404.
    28. 28)
      • 24. Li, J.H., Li, M.J., Wen, J.Y., et al: ‘Generating wind power time series based on its persistence and variation characteristics’, Sci. China Tech. Sci., 2014, 57, (12), pp. 24752486.
    29. 29)
      • 8. Aien, M., Khajeh, M.G., Rashidinejad, M., et al: ‘Probabilistic power flow of correlated hybrid wind-photovoltatic power systems’, IET Renew. Power Gener., 2014, 8, (6), pp. 649658.
    30. 30)
      • 31. Sumaili, J., Keko, H., Miranda, V., et al: ‘Finding representative wind power scenarios and their probabilities for stochastic models’. Proc. 16th Int. Conf. Intelligent System Application to Power Systems (ISAP), Hersonissos, Greece, September 2011, pp. 2528.
    31. 31)
      • 25. Fishman, G.S.: ‘Discrete-event simulation: modelling, programming, and analysis’ (Springer, 2001, 1st edn.), p. 513.
    32. 32)
      • 1. Gafurov, T., Prodanovic, M.: ‘Indirect coordination of electricity demand for balancing wind power’, IET Renew. Power Gener., 2014, 8, (8), pp. 858866.
    33. 33)
      • 4. Zhang, N., Kang, C.Q., Xia, Q., et al: ‘A convex model of risk-based unit commitment for day-ahead market clearing considering wind power uncertainty’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 15821592.
    34. 34)
      • 6. Dukpa, A., Duggal, I., Venkatesh, B., et al: ‘Optimal participation and risk mitigation of wind generators in an electricity market’, IET Renew. Power Gener., 2010, 4, (2), pp. 165175.
    35. 35)
      • 27. Baringo, L., Conejo, A.J.: ‘Correlated wind-power production and electric load scenarios for investment decisions’, Appl. Energy, 2013, 101, (1), pp. 475482.
    36. 36)
      • 39. Cai, D.F., Shi, D.Y., Chen, J.F.: ‘Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 474482.
    37. 37)
      • 23. Papaefthymious, G., Klöckl, B.: ‘MCMC for wind power simulation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 234240.
    38. 38)
      • 26. Morales, J.M., Pineda, S., Conejo, A.J., et al: ‘Scenario reduction for futures market trading in electricity markets’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 878888.
    39. 39)
      • 38. Cheng, S.H., Higham, N.J.: ‘A modified Cholesky algorithm based on a symmetric indefinite factorization’, Siam J. Matrix Anal. Appl., 1988, 19, (4), pp. 10971110.
    40. 40)
      • 14. Taylor, J.W., Mcsharry, P.E., Buizza, R.: ‘Wind power density forecasting using ensemble predictions and time series models’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 775782.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0568
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0568
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address