access icon free Fuzzy-PI-based sensorless frequency and voltage controller for doubly fed induction generator connected to a DC microgrid

This study presents fuzzy-proportional–integral (PI)-based sensorless frequency and voltage control strategy for doubly fed induction generator connected to a dc microgrid system. A significant reduction of the costs can be achieved by this topology because only a single dc/ac converter and a diode rectifier are required instead of the traditional back-to-back converter topology. To improve the performance of the rotor current controller, a fuzzy PI-based control algorithm is used. Furthermore, a simple sensorless control technique based on the detection of the stator frequency is employed to detect the rotor position. The sensorless control technique can operate without the knowledge of the machine parameters. The main aim of this study is to keep the stator frequency as well as the dc bus voltage at the desired value under different load and wind speed conditions without using position sensor. Simulation and experimental studies were performed to verify the dynamic and steady-state performances of the proposed control strategy The results show that the proposed strategy not only has an excellent steady state and dynamic performance, but also it is robust against the variation of system parameters such as wind speed and load.

Inspec keywords: PI control; voltage control; stators; distributed power generation; position measurement; sensors; frequency control; rotors; rectifying circuits; asynchronous generators; power generation economics; wind power plants; DC-AC power convertors; power generation control; fuzzy control; electric current control; sensorless machine control

Other keywords: cost reduction; wind speed conditions; position sensor; performance improvement; dc-ac converter; dynamic performances; steady-state performances; dc bus voltage; stator frequency detection; fuzzy-PI-based sensorless voltage controller; rotor current controller; fuzzy PI-based control algorithm; fuzzy-PI-based sensorless frequency controller; dc microgrid system; diode rectifier; doubly fed induction generator; fuzzy-proportional-integral-based control strategy; rotor position detection

Subjects: Fuzzy control; Frequency control; DC-AC power convertors (invertors); Wind power plants; Voltage control; Distributed power generation; Asynchronous machines; Control of electric power systems; Current control; AC-DC power convertors (rectifiers)

References

    1. 1)
      • 32. Forchetti, D., Garcia, G., Valla, M.: ‘Adaptive observer for sensorless control of stand-alone doubly fed induction generator’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 41744180.
    2. 2)
      • 41. Meshram, P.M., Kanojiya, R.G.: ‘Tuning of PID controller using Ziegler–Nichols method for speed control of DC motor’. Int. Conf. on Advances in Engineering, Science and Management (ICAESM), 30–31 March 2012, pp. 117122.
    3. 3)
      • 1. Colak, I., Giuanlica, F., Bayhan, S., et al: ‘Critical aspects of wind energy conversion systems in smart grid applications’, Renew. Sust. Energy Rev., 2015, 52, (2015), pp. 155171.
    4. 4)
      • 31. Bogalecka, E., Krzeminski, Z.: ‘Sensorless control of double fed machine for wind power generators’. Tenth Int. Conf. on Power Electronics and Motion Control, October 2002, pp. 15.
    5. 5)
      • 38. Amiri, N., Madani, S., Lipo, T., et al: ‘An improved direct decoupled power control of doubly fed induction machine without rotor position sensor and with robustness to parameter variation’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 873884.
    6. 6)
      • 11. Villablanca, M.E., Nadal, J.I., Bravo, M.A.: ‘A 12-pulse AC–DC rectifier with high-quality input/output waveforms’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 18751881.
    7. 7)
      • 26. Aissaoui, G., Tahour, A., Essounbouli, N., et al: ‘A fuzzy-PI control to extract an optimal power from wind turbine’. Energy Conversion and Management, Global Conf. on Renewable energy and Energy Efficiency for Desert Regions 2011, 2011, 2013, vol. 65, pp. 688696.
    8. 8)
      • 40. Bayhan, S., Abu-Rub, H.: ‘An autonomous frequency and voltage controller for standalone doubly fed induction generator’. 2015 IEEE Conf. on Energy Conversion, Johar Bahru, Malaysia, October 19–21, 2015.
    9. 9)
      • 25. Liu, C.-H., Hsu, Y.-Y.: ‘Design of a self-tuning pi controller for a statcom using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 702715.
    10. 10)
      • 36. Shen, B., Mwinyiwiwa, B., Zhang, Y., et al: ‘Sensorless maximum power point tracking of wind by DFIG using rotor position phase lock loop (pll)’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 942951.
    11. 11)
      • 16. Demirbas, S., Bayhan, S.: ‘Active and reactive power control of doubly fed induction generator using direct power control technique’. 2013 Fourth Int. Conf. on Power Engineering, Energy and Electrical Drives (POWERENG), May 2013, pp. 4145.
    12. 12)
      • 3. Bayhan, S., Abu-Rub, H., Colak, I.: ‘A novel power control strategy for wind-driven permanent magnet synchronous generator based on a single leg multi-mode power converter’. 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), 22–23 March 2015, pp. 16.
    13. 13)
      • 5. Demirbas, S., Bayhan, S.: ‘Grid synchronization of doubly fed induction generator in wind power systems’. 2011 Int. Conf. on Power Engineering, Energy and Electrical Drives (POWERENG), May 2011, pp. 15.
    14. 14)
      • 14. Fadaeinedjad, R., Moallem, M., Moschopoulos, G.: ‘Simulation of a wind turbine with doubly fed induction generator by fast and simulink’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 690700.
    15. 15)
      • 39. Mwinyiwiwa, B., Zhang, Y., Shen, B., et al: ‘Rotor position phase-locked loop for decoupled p–q control of DFIG for wind power generation’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 758765.
    16. 16)
      • 12. Abu-Rub, H., Iqbal, A., Guzinski, J.: ‘High performance control of AC drives with Matlab/Simulink models’ (A John Wiley & Sons Ltd., UK, 2012).
    17. 17)
      • 27. Aboushady, A., Ahmed, K., Finney, S., et al: ‘Fuzzy selftuning pi controller for phase-shifted series resonant converters’. 2011 Int. Conf. on Power Engineering, Energy and Electrical Drives (POWERENG), May 2011, pp. 16.
    18. 18)
      • 33. Marques, G., Sousa, D.: ‘New sensorless rotor position estimator of a DFIG based on torque calculations-stability study’, IEEE Trans. Energy Convers., 2012, 27, (1), pp. 196203.
    19. 19)
      • 4. Luna, A., Lima, F., Santos, D., et al: ‘Simplified modelling of a DFIG for transient studies in wind power applications’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 920.
    20. 20)
      • 18. Bouafia, A., Krim, F., Gaubert, J.-P.: ‘Design and implementation of high-performance direct power control of three-phase {PWM} rectifier, via fuzzy and {PI} controller for output voltage regulation’, Energy Convers. Manage., 2009, 50, (1), pp. 613.
    21. 21)
      • 17. Malinowski, M., Jasinski, M., Kazmierkowski, M.: ‘Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 447454.
    22. 22)
      • 15. Xu, L., Zhi, D., Yao, L.: ‘Direct power control of grid connected voltage source converters’. IEEE Power Engineering Society General Meeting, June 2007, pp. 16.
    23. 23)
      • 35. Pena, R., Cardenas, R., Proboste, J., et al: ‘Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 330339.
    24. 24)
      • 21. Zhi, D., Xu, L., Williams, B., et al: ‘A new direct power control strategy for grid connected voltage source converters’. Int. Conf. on Electrical Machines and Systems, 2008, ICEMS 2008, October 2008, pp. 11571162.
    25. 25)
      • 9. Marques, G.D., Iacchetti, M.F.: ‘Inner control method and frequency regulation of a DFIG connected to a DC link’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 435444.
    26. 26)
      • 13. Tremblay, E., Atayde, S., Chandra, A.: ‘Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a DSP-based implementation approach’, IEEE Trans. Sust. Energy, 2011, 2, (3), pp. 288299.
    27. 27)
      • 8. Marques, G.D., Iacchetti, M.F.: ‘Stator frequency regulation in a field-oriented controlled DFIG connected to a DC Link’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 59305939.
    28. 28)
      • 19. Zhi, D., Xu, L., Williams, B.: ‘Improved direct power control of grid-connected dc/ac converters’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 12801292.
    29. 29)
      • 28. Hameed, S., Das, B., Pant, V.: ‘A self-tuning fuzzy PI controller for TSCS to improve power system stability’, Electr. Power Syst. Res., 2008, 78, (10), pp. 17261735.
    30. 30)
      • 20. Zhang, Y., Li, Z., Zhang, Y., et al: ‘Performance improvement of direct power control of PWM rectifier with simple calculation’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 34283437.
    31. 31)
      • 6. Marques, G.D., Iacchetti, M.F.: ‘A self-sensing stator-current-based control system of a DFIG connected to a DC-Link’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 61406150.
    32. 32)
      • 23. Li, X., Song, Y.-J., Han, S.-B.: ‘Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller’, J. Power Sources, 2008, 180, (1), pp. 468475.
    33. 33)
      • 24. Sant, A., Rajagopal, K.: ‘Pm synchronous motor speed control using hybrid fuzzy-pi with novel switching functions’, IEEE Trans. Magn., 2009, 45, (10), pp. 46724675.
    34. 34)
      • 37. Cardenas, R., Pena, R., Proboste, J., et al: ‘MRAS observer for sensorless control of standalone doubly fed induction generators’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 710718.
    35. 35)
      • 2. Abu-Rub, H., Malinowski, M., Al-Haddad, K.: ‘Power electronics for renewable energy systems, transportation and industrial applications’ (A John Wiley & Sons Ltd., UK, 2014).
    36. 36)
      • 22. Bayhan, S., Abu-Rub, H.: ‘Model predictive sensorless control of standalone doubly fed induction generator’. Fortieth Annual Conf. of the IEEE Industrial Electronics Society, IECON 2014, October 2014, pp. 21662172.
    37. 37)
      • 7. Marques, G.D., Sousa, D.M., Iacchetti, M.F.: ‘Air-gap power-based sensorless control in a DFIG connected to a DC Link’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 367375.
    38. 38)
      • 30. Marques, G., Pires, V., Sousa, S., et al: ‘A DFIG sensorless rotor position detector based on a hysteresis controller’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 917.
    39. 39)
      • 10. Singh, B., Singh, B.N., Chandra, A., et al: ‘A review of three-phase improved power quality AC–DC converters’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 641660.
    40. 40)
      • 29. Bayhan, S., Abu-Rub, H.: ‘Performance comparison of two sensorless control methods for standalone doubly-fed induction generator’. Sixteenth Int. Power Electronics and Motion Control Conf. and Exposition (PEMC), September 2014, pp. 9961000.
    41. 41)
      • 34. Cardenas, R., Pena, R., Clare, J., et al: ‘MRAS observers for sensorless control of doubly-fed induction generators’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 10751084.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0504
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0504
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading