Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review

Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Power generation from renewable energy resources is on the increase in most countries, and this trend is expected to continue in the foreseeable future. In an effort to enhance the integration of renewable power generation from solar and wind into the traditional power network, there is need to address the vulnerabilities posed to the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling and commitment of generating units. This has drawn the interest of utilities and researchers towards developing state of the art forecasting techniques for forecasting wind speeds and solar irradiance over a wide range of temporal and spatial horizons. The main forecasting approaches employ physical, statistical, artificial intelligence and hybrid methodologies. This study provides the rationale for forecasting in power systems, a succinct review of forecasting techniques as well as an assessment of their performance as applied in the literature. Also, techniques for improving the accuracy of forecasts have been presented together with key forecasting issues and developing trends.

References

    1. 1)
      • 54. Jianyuan, X., Mingli, Z., Yun, T., et al: ‘Design and implementation of the forecasting system for wind farm power’. Second Int. Conf. on Signal Processing Systems (ICSPS), 2010, 2010, vol. 1, pp. V1190.
    2. 2)
      • 27. Pelland, S., Remund, J., Kleissl, J., et al: ‘Photovoltaic and solar forecasting: state of the art’, IEA PVPS, Task 14, 2013, pp. 136.
    3. 3)
      • 44. Li, D., Du, Y.: ‘Artificial intelligence with uncertainty’ (CRC Press, 2007).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 75. Energy, G.: ‘Western wind and solar integration study’ (Citeseer, 2010).
    8. 8)
      • 84. Heskes, T.: ‘Practical confidence and prediction’. Proc. of the 1996 Conf. Advances in Neural Information Processing Systems, 1997, vol. 9, p. 176.
    9. 9)
      • 77. Sivanandam, S., Deepa, S.: ‘Introduction to neural networks using Matlab 6.0’ (Tata McGraw-Hill Education, 2006).
    10. 10)
    11. 11)
      • 3. IEA: ‘Technology roadmap, wind energy’. Report, Energy Technology Perspectives, 2013 edition, International Energy Agency, 2013.
    12. 12)
      • 36. De la Rosa, J., Posadillo, R., Bellido, F., et al: ‘Very short term forecasting of solar radiation’. 33rd IEEE Photovoltaic Specialists Conf., 2008. PVSC'08, 2008, pp. 15.
    13. 13)
    14. 14)
      • 62. Negash, A.I., Hooshmand, A., Sharma, R.: ‘A wavelet-based method for high resolution multi-step pv generation forecasting’. T&D Conf. and Exposition, 2014 IEEE PES, 2014, pp. 15.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 19. Lange, M., Focken, U.: ‘Physical approach to short-term wind power prediction’ (Springer, 2006).
    21. 21)
      • 15. Kleissl, J.: ‘Solar energy forecasting and resource assessment’ (Academic Press, 2013).
    22. 22)
    23. 23)
      • 2. P. IEA-PVPS: ‘Report snapshot of global pv 1992-2014’. Report IEA-PVPS T1-26, 2015.
    24. 24)
    25. 25)
      • 87. Box, G.E., Jenkins, G.M., Reinsel, G.C.: ‘Time series analysis: forecasting and control’ (JohnWiley & Sons, 2011), vol. 734.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 46. Jayaraj, K., Padmakumari, K., Sreevalsan, E., et al: ‘Wind speed and power prediction using artificial neural networks’. European Wind Energy Conf., 2004.
    30. 30)
    31. 31)
      • 22. Monteiro, C., Bessa, R., Miranda, V., et al: ‘Wind power forecasting: state-of-the-art 2009’. Tech. Rep., ArgonneNational Laboratory (ANL), 2009.
    32. 32)
    33. 33)
    34. 34)
      • 24. Traunmüller, W., Steinmaurer, G.: ‘Solar irradiance forecasting, benchmarking of different techniques and applications of energy meteorology’. Proc. EuroSun 2010 Conf., 2010.
    35. 35)
      • 63. Klir, G., Yuan, B.: ‘Fuzzy sets and fuzzy logic’ (Prentice Hall New Jersey, 1995), vol. 4.
    36. 36)
      • 53. Jursa, R.: ‘Variable selection for wind power prediction using particle swarm optimization’. Proc. Ninth Annual Conf. on Genetic and Evolutionary Computation, 2007, pp. 20592065.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 86. Pinson, P.: ‘Estimation of the uncertainty in wind power forecasting’. Ph.D. dissertation, École Nationale Supérieure des Mines de Paris, 2006.
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 1. GWEC: ‘Global wind report, annual market update, 2014’. Report, Global Wind Energy Council, 2014.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
      • 121. Saroha, S., Aggarwal, S.: ‘A review and evaluation of current wind power prediction technologies’, 2015.
    51. 51)
    52. 52)
    53. 53)
      • 16. Ernst, B., Reyer, F., Vanzetta, J.: ‘Wind power and photovoltaic prediction tools for balancing and grid operation’. Integration of Wide-Scale Renewable Resources into the Power Delivery System, 2009 CIGRE/IEEE PES Joint Symp., 2009, pp. 19.
    54. 54)
    55. 55)
    56. 56)
      • 60. Zhang, N., Behera, P.K.: ‘Solar radiation prediction based on recurrent neural networks trained by Levenberg-Marquardt backpropagation learning algorithm’. Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, 2012, pp. 17.
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
      • 4. IEA-PVPS: ‘Technology roadmap, solar photovolatic energy’. Report, Energy Technology Perspectives, 2014 edition, International Energy Agency, 2014.
    63. 63)
      • 120. Cutler, N.: ‘Wind energy forecasting issues paper’ (Centre for Energy and Environmental Markets, The University of New South Wales, 2006).
    64. 64)
    65. 65)
      • 96. Hodge, B.-M., Milligan, M.: ‘Wind power forecasting error distributions over multiple timescales’. Power and Energy Society General Meeting, 2011, 2011, pp. 18.
    66. 66)
    67. 67)
      • 18. Lorenz, E., Remund, J., Müller, S.C., et al: ‘Benchmarking of different approaches to forecast solar irradiance’. 24th European Photovoltaic Solar Energy Conf., Hamburg, Germany, 2009, vol. 21, p. 25.
    68. 68)
    69. 69)
    70. 70)
      • 51. Xingpei, L., Yibing, L., Weidong, X.: ‘Wind speed prediction based on genetic neural network’. 4th IEEE Conf. on Industrial Electronics and Applications, 2009. ICIEA 2009, 2009, pp. 24482451.
    71. 71)
    72. 72)
    73. 73)
      • 64. Pappis, C.P., Siettos, C.I.: ‘Fuzzy reasoning’, inEdmund K. Burke, Graham Kendall (Eds.):Search methodologies’ (Springer, 2005), pp. 437474.
    74. 74)
    75. 75)
    76. 76)
    77. 77)
      • 5. Driesen, J., Belmans, R.: ‘Distributed generation: challenges and possible solutions’. Power Engineering Society General Meeting, 2006, 2006, pp. 822.
    78. 78)
      • 116. Miranda, M.S., Dunn, R.W., Li, F., et al: ‘Bayesian inferencing for wind resource characterisation’. Int. Conf. on Probabilistic Methods Applied to Power Systems, 2006. PMAPS 2006, 2006, pp. 16.
    79. 79)
    80. 80)
    81. 81)
    82. 82)
      • 35. Hamilton, J.D.: ‘Time series analysis’, 1995.
    83. 83)
    84. 84)
    85. 85)
      • 72. Mills, A.: ‘Implications of wide-area geographic diversity for short-term variability of solar power’ (Lawrence Berkeley National Laboratory, 2010).
    86. 86)
    87. 87)
      • 88. García-Jurado, I., González-Manteiga, W., Prada-Sánchez, J., et al: ‘Predicting using BoxJenkins, nonparametric, and bootstrap techniques’, Technometrics, 1995, 37, (3), pp. 303310.
    88. 88)
    89. 89)
    90. 90)
      • 59. Schachter, J., Mancarella, P.: ‘A short-term load forecasting model for demand response applications’. 11th Int. Conf. on the European Energy Market (EEM), 2014, 2014, pp. 15.
    91. 91)
    92. 92)
    93. 93)
      • 70. Lorenz, E., Heinemann, D.: ‘Prediction of solar irradiance and photovoltaic power’. Comprehensive Renewable Energy, Oxford, 2012, pp. 239292.
    94. 94)
      • 26. Lorenz, E., Kühnert, J., Heinemann, D.: ‘Overview of irradiance and photovoltaic power prediction’, inA. Troccoli, L. Dubus, S.E. Haupt (Eds.):Weather matters for energy’ (Springer, 2014), pp. 429454.
    95. 95)
    96. 96)
      • 29. Firat, U., Engin, S.N., Saraclar, M., et al: ‘Wind speed forecasting based on second order blind identification and autoregressive model’. Ninth Int. Conf. on Machine Learning and Applications (ICMLA), 2010, 2010, pp. 686691.
    97. 97)
    98. 98)
    99. 99)
      • 74. Perez-Arriaga, I.J.: ‘Managing large scale penetration of intermittent renewables’. 2011 MITEI Symp., 2011, p. 43.
    100. 100)
      • 17. Cibulka, L., Brown, M., Miller, L., et al: ‘User requirements and research needs for renewable generation forecasting tools that will meet the needs of the caiso and utilities for 2020’. A White Paper Report Prepared by CIEE, 2012.
    101. 101)
      • 76. Lew, D., Piwko, R.: ‘Western wind and solar integration study’. Technical Report, No. NREL/SR-550-47781, National Renewable Energy Laboratories, 2010.
    102. 102)
    103. 103)
    104. 104)
    105. 105)
      • 73. Zhang, J., Hodge, B.-M., Florita, A., et al: ‘Metrics for evaluating the accuracy of solar power forecasting’. Third Int. Workshop on Integration of Solar Power into Power Systems, London, England, 2013.
    106. 106)
    107. 107)
    108. 108)
      • 42. Kostylev, V., Pavlovski, A.: ‘Solar power forecasting performance-towards industry standards’. First Int. Workshop on the Integration of Solar Power into Power Systems Aarhus, Denmark, 2011.
    109. 109)
    110. 110)
    111. 111)
      • 98. Meinshausen, N.: ‘Quantile regression forests’, J. Mach. Learn. Res., 2006, 7, pp. 983999.
    112. 112)
    113. 113)
    114. 114)
      • 89. Pinson, P., Kariniotakis, G.: ‘Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment’. Power Tech Conf. Proc., 2003, Bologna, 2003, vol. 2, pp. 8.
    115. 115)
    116. 116)
      • 40. Boland, J.: ‘Time series modelling of solar radiation’ (Springer, 2008).
    117. 117)
      • 39. Boland, J., Korolkiewicz, M., Agrawal, M., et al: ‘Forecasting solar radiation on short time scales using a coupled autoregressive and dynamical system (cards) model’. Proc. of the Australian Solar Energy Conf., Melbourne, 2012, pp. 67.
    118. 118)
      • 106. Brown, R.G., Hwang, P.Y.: ‘Introduction to random signals and applied Kalman filtering: with matlab exercises and solutions’, in Brown, R.G., Hwang, P.Y.C. (Eds.): ‘Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions’ (Wiley, New York, c1997), vol. 1.
    119. 119)
      • 92. Carney, J.G., Cunningham, P., Bhagwan, U.: ‘Confidence and prediction intervals for neural network ensembles’. Int. Joint Conf. on Neural Networks, 1999. IJCNN'99, 1999, vol. 2, pp. 12151218.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0477
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address