access icon free AGC of dish-Stirling solar thermal integrated thermal system with biogeography based optimised three degree of freedom PID controller

The present study emphasises the application of dish-Stirling solar thermal system (DSTS) in automatic generation control (AGC) of an unequal two area thermal system. The thermal systems are equipped with single reheat turbine, generation rate constraint, and governor dead band. The system dynamics with and without DSTS are tested for integral, proportional integral, proportional integral derivative, and three degree of freedom proportional integral derivative (3DOF-PID) as secondary controllers. The simultaneous optimisation of the controller parameters for each controller is done with biogeography based optimisation (BBO) technique. The 3DOF-PID controllers for the system having DSTS outperform the other controllers in terms of magnitude of oscillation, peak deviation, and settling time in system dynamic responses. The same is validated with random load perturbation. Sensitivity analysis proves that BBO optimised 3DOF-PID controller parameters obtained at nominal conditions are healthy enough. These optimised 3DOF-PID controller parameters are not necessarily needed to optimise for wide changes in system loading, and inertia constant H; step load perturbation (SLP) in all areas and higher SLP in area1. Integration of DSTS for AGC of thermal system is safely attributed.

Inspec keywords: sensitivity analysis; gain control; power generation control; solar power stations; dynamic response; three-term control; thermal power stations; optimisation

Other keywords: step load perturbation; random load perturbation; 3DOF-PID controllers; governor dead band; generation rate constraint; oscillation magnitude; inertia constant; BBO technique; optimised three-degree-of-freedom PID controller; peak deviation; settling time; sensitivity analysis; biogeography-based optimisation technique; DSTS; automatic generation control; AGC; dish-Stirling solar thermal integrated thermal system; system dynamic response; reheat turbine

Subjects: Optimisation techniques; Phase and gain control; Control of electric power systems; Thermal power stations and plants; Solar power stations and photovoltaic power systems; Optimisation techniques

References

    1. 1)
      • 8. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2010, 4, (5), pp. 438457.
    2. 2)
      • 20. Rahman, A., Saikia, L.C., Sinha, N.: ‘Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three-degree-of-freedom integral-derivative controller’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22842293, In press, doi: 10.1049/iet-gtd.2015.0317.
    3. 3)
      • 21. Johnson, M.A., Mohammad, H.M.: ‘PID Control: new identification and design methods’ (Springer, 2005).
    4. 4)
      • 7. Bevrani, H., Hiyama, T.: ‘Intelligent automatic generation control’ (CRC Press, Taylor and Francis, 2011).
    5. 5)
      • 6. Parmar, K.P.S., Majhi, S., Kothari, D.P.: ‘Load frequency control of a realistic power system with multi-source power generation’, Electr. Power Energy Syst., 2012, 42, pp. 426433.
    6. 6)
      • 4. Nanda, J., Mishra, S., Saikia, L.C.: ‘Maiden application of bacterial foraging-based optimization technique in multi area automatic generation control’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 602609.
    7. 7)
      • 11. Abbas, M., Boumeddane, B., Said, N., et al: ‘Dish Stirling technology: A 100 MW solar power plant using hydrogen for Algeria’, Int. J. Hydrog. Energy, 2011, 36, pp. 43054314.
    8. 8)
      • 17. Sahu, R.K., Panda, S., Pradhan, P.C.: ‘Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for LFC of multi area power systems’, Electr. Power Energy Syst., 2015, 69, pp. 200212.
    9. 9)
      • 1. Kundur, P.: ‘Power system stability and control’ (Mc Graw Hill, 1993).
    10. 10)
      • 18. Dash, P., Saikia, L.C., Sinha, N.: ‘Comparison of performances of several FACTS devices using Cuckoo search algorithm optimized 2DOF controllers in multi-area AGC’, Electr. Power Energy Syst., 2015, 65, pp. 316324.
    11. 11)
      • 12. Martin, D.S., Martinez, J.A., Garcia, J.E., et al: ‘Solar dish­Stirling system optimisation with a doubly fed induction generator’, IET Renew. Power Gener., 2012, 6, (4), pp. 276288.
    12. 12)
      • 13. Li, Y., Choi, S.S., Yang, C., et al: ‘Design of variable-speed dish-Stirling solar–thermal power plant for maximum energy harness’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 394403.
    13. 13)
      • 15. Cirocco, L.R., Belusko, M., Bruno, F., et al: ‘Controlling stored energy in a concentrating solar thermal power plant to maximise revenue’, IET Renew. Power Gener., 2015, 9, (4), pp. 379388.
    14. 14)
      • 5. Golpira, H., Bevrani, H., Golpira, H.: ‘Application of GA optimization for automatic generation control design in an interconnected power system’, Energy Convers. Manage., 2011, 52, pp. 22472255.
    15. 15)
      • 2. Ibraheem Kumar, P., Kothari, D.P.: ‘Recent philosophies of automatic generation control strategies in power systems’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 346357.
    16. 16)
      • 14. Gafurov, T., Usaola, J., Prodanovic, M.: ‘Modelling of concentrating solar power plant for power system reliability studies’, IET Renew. Power Gener., 2015, 9, (2), pp. 120130.
    17. 17)
      • 3. Pandey, S.K., Mohanty, S.R., Kishor, N.: ‘A literature survey on load–frequency control for conventional and distribution generation power systems’, Renew. Sustain. Energy Rev., 2013, 25, pp. 318334.
    18. 18)
      • 9. Das, D.C., Sinha, N., Roy, A.K.: ‘Small signal stability analysis of dish-Stirling solar thermal based autonomous hybrid energy system’, Electr. Power Energy Syst., 2014, 63, pp. 485498.
    19. 19)
      • 10. Kongtragool, B., Wongwises, S.: ‘A review of solar-powered Stirling engines and low temperature differential Stirling engines’, Renew. Sustain. Energy Rev., 2003, 7, (2), pp. 131154.
    20. 20)
      • 23. Bansal, A.K., Kumar, R., Gupta, R.A.: ‘Economic analysis and power management of a small autonomous hybrid power system (SAHPS) using biogeography based optimization (BBO) algorithm’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 638648.
    21. 21)
      • 16. Sharma, Y., Saikia, L.C.: ‘Automatic generation control of a multi-area ST – Thermal power system using Grey Wolf Optimizer algorithm based classical controllers’, Electr. Power Energy Syst., 2015, 73, pp. 853862.
    22. 22)
      • 19. Kim, D.H.: ‘Design and tuning approach of 3-DOF Emotion Intelligent PID (3-DOF-EI-PID) controller’. 6th UKSim/AMSS European Modelling Symp. on Computer Modelling and Simulation, Korea, 2012, pp. 7477.
    23. 23)
      • 22. Simon, D.: ‘Biogeography based optimization’, IEEE Trans. Evol. Comput., 2008, 12, (6), pp. 702713.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0474
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0474
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading