access icon free Design and analysis of a pendulum-based electromagnetic energy harvester using anti-phase motion

This study describes the design and analysis of an anti-phase pendulum motion-based electromagnetic energy harvester. The proposed energy harvester consists of a magnet-based pendulum, a coil-based pendulum, shaft, connecting rod, and housing. Two pendulums were connected in parallel, which can move in anti-phase motion, using a rotatable connecting rod. Mechanical, electrical, and magnetic behaviours were investigated through the simulations (MATLAB, ANSYS Maxwell) and experiments. The anti-phase pendulum motion can reduce the induction time. This phenomenon has the effect of improving the output voltage of the electromagnetic induction, which is experimentally verified. Experimental results demonstrated that the induction time is shortened by 21%, and the output power showed a 37% increase compared with the single-phase pendulum motion. The dependence of the output on the input conditions was also investigated extensively in terms of the frequency, displacement, mass, and electrical load resistance. The maximum output power of 247 μW was obtained at anti-phase pendulum motion. In addition, the proposed anti-phase motion phenomenon can be used effectively to improve the output voltage of an electromagnetic induction-based energy harvester.

Inspec keywords: electromagnetic induction; pendulums; electromagnetic devices; energy harvesting

Other keywords: electromagnetic induction; pendulum-based electromagnetic energy harvester; antiphase pendulum motion; connecting rod; rotatable connecting rod; power 247 muW; ANSYS Maxwell simulation; magnet-based pendulum; MATLAB simulation; electrical load resistance; shaft; coil-based pendulum; single-phase pendulum motion

Subjects: Energy harvesting; Electromagnetic device applications; Energy harvesting

References

    1. 1)
      • 3. Munaz, A., Lee, B., Chung, G.: ‘A study of an electromagnetic energy harvester using multi-pole magnet’, Sens. Actuators A, Phys., 2013, 201, (0), pp. 134140.
    2. 2)
      • 14. Litak, G., Borowiec, M., Wiercigroch, M.: ‘Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions’, Dyn. Syst., Int. J., 2008, 23, (3), pp. 259265.
    3. 3)
      • 16. Uzun, Y., Kurt, E.: ‘The effect of periodic magnetic force on a piezoelectric energy harvester’, Sens. Actuators A, Phys., 2013, 192, pp. 5868.
    4. 4)
      • 17. Pillatsch, P., Yeatman, E.M., Holmes, A.S.: ‘A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications’, Sens. Actuators A, Phys., 2014, 206, pp. 178185.
    5. 5)
      • 22. Ma, T., Zhang, H., Xu, N.: ‘A novel parametrically excited non-linear energy harvester’, Mech. Syst. Signal Process., 2012, 28, pp. 323332.
    6. 6)
      • 1. Saha, C.R., O'Donnell, T., Wang, N., et al: ‘Electromagnetic generator for harvesting energy from human motion’, Sens. Actuators A, Phys., 2008, 147, (1), pp. 248253.
    7. 7)
      • 19. Shukla, R., Bell, A.J.: ‘PENDEXE: a novel energy harvesting concept for low frequency human waistline’, Sens. Actuators A, Phys., 2015, 222, pp. 3947.
    8. 8)
      • 6. Roundy, S., Takahashi, E.: ‘A cost-effective planar electromagnetic energy harvester transducer’. PowerMEMS 2012, Atlanta, GA, USA, 2–5 December 2012, pp. 1013.
    9. 9)
      • 5. Dibin, Z., Steve, B., John, T., et al: ‘Vibration energy harvesting using the Halbach array’, Smart Mater. Struct., 2012, 21, (7), p. 075020.
    10. 10)
      • 8. von Büren, T., Tröster, G.: ‘Design and optimization of a linear vibration-driven electromagnetic micro-power generator’, Sens. Actuators A, Phys., 2007, 135, (2), pp. 765775.
    11. 11)
      • 21. Wang, Y., Chen, C., Sung, C.: ‘System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel’, IEEE/ASME Trans. Mechatronics, 2013, 18, (2), pp. 754763.
    12. 12)
      • 23. Ken, S., Yuji, O., Jun, O., et al: ‘Vibration-based automatic power-generation system’, Microsyst. Technol., 2005, 11, (965), p. 969.
    13. 13)
      • 7. Cepnik, C., Radler, O., Rosenbaum, S., et al: ‘Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling’, Sens. Actuators A, Phys., 2011, 167, (2), pp. 416421.
    14. 14)
      • 12. Borowiec, M., Litak, G., Mitcheson, P.D., et al: ‘Dynamic response of a pendulum-driven energy harvester in the presence of noise’, J. Phys., Conf. Ser., 2013, 476, (1), p. 012038.
    15. 15)
      • 13. Kwuimy, C.A.K., Litak, G., Borowiec, M., et al: ‘Performance of a piezoelectric energy harvester driven by air flow’, Appl. Phys. Lett., 2012, 100, p. 024103.
    16. 16)
      • 10. Camilleri, K.: ‘Knowing what would happen: the epistemic strategies in Galileo's thought experiments’, Stud. Hist. Philos. Sci. A, 2015, 54, pp. 102112.
    17. 17)
      • 18. Uzun, Y., Kurt, E., Hilal Kurt, H.: ‘Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum’, Sens. Actuators A, Phys., 2015, 224, pp. 119130.
    18. 18)
      • 11. Palmieri, P.: ‘Experimental history: swinging pendulums and melting shellac’, Endeavour, 2009, 33, (3), pp. 8892.
    19. 19)
      • 20. Dai, X.: ‘An vibration energy harvester with broadband and frequency-doubling characteristics based on rotary pendulums’, Sens. Actuators A, Phys., 2016, 241, pp. 161168.
    20. 20)
      • 15. Lee, S., Lee, Y., Kim, D., et al: ‘Triboelectric nanogenerator for harvesting pendulum oscillation energy’, Nano Energy, 2013, 2, (6), pp. 11131120.
    21. 21)
      • 9. Pan, C.T., Wu, T.T.: ‘Development of a rotary electromagnetic microgenerator’, J. Micromech. Microeng., 2007, 17, (1), p. 120.
    22. 22)
      • 2. Shuo, C., David, P.A.: ‘A study of a multi-pole magnetic generator for low-frequency vibrational energy harvesting’, J. Micromech. Microeng., 2010, 20, (2), p. 025015.
    23. 23)
      • 4. Zhu, D., Beeby, S., Tudor, J., et al: ‘Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays’, Sens. Actuators A, Phys., 2013, 203, (0), pp. 1119.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0396
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0396
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading