http://iet.metastore.ingenta.com
1887

Integration of renewable distributed generators into the distribution system: a review

Integration of renewable distributed generators into the distribution system: a review

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent advances in renewable energy technologies and changes in the electric utility infrastructures have increased the interest of the power utilities in utilisation of distributed generation (DG) resources to generate electricity. The recent trends in the development and utilisation of DG resources for power generation application are subject to the deregulation of the electric power sector and technical constraints to extend distribution and transmission networks to some areas. The electric power system planners, regulators and the policy makers have derived many benefits from integration of DG units into the distribution networks. These benefits depend on the characteristics of DG units such as photovoltaic (PV), wind system and reciprocating engines, characteristics of the loads, local renewable resources and network configuration. This study comprehensively reviews various research works on the technical, environmental and economic benefits of renewable DG integration such as line-loss reduction, reliability improvement, economic benefits and environmental pollution optimisation. These benefits can be optimised if all the renewable DG units are optimally sized, located and configured. This study also reviews the current status of renewable DG technologies based on different characteristics and the operational issues of integration of renewable DG into the electric power systems.

References

    1. 1)
      • 1. El-Samahy, I., El-Saadany, E.: ‘The effect of DG on power quality in a deregulated environment’. IEEE Power Engineering Society General Meeting, 2005, vol. 3, pp. 29692976.
    2. 2)
    3. 3)
      • 3. Hung, D.Q., Mithulananthan, N.: ‘DG allocation in primary distribution systems considering loss reduction’, in A.F. Zobaa and R.C. Bansal (Eds.): ‘Handbook of renewable energy technology’ (World Scientific Publishers, Singapore, 2011), pp. 587628.
    4. 4)
      • 4. Gandomkar, M., Vakilian, M., Ehsan, M.: ‘Optimal distributed generation allocation in distribution network using Hereford Ranch algorithm’. Proc. Eighth Int. Conf. Electrical Machine and Systems, Nanjing, China, September 2005, pp. 916918.
    5. 5)
      • 5. ‘Distributed energy resources guide’. Available at http://www.energy.ca.gov/distgen/index.html, accessed June 2015.
    6. 6)
      • 6. Gopi, A., Raj, P.A.: ‘Distributed generation for line loss reduction in radial distribution system’. Proc. Int. Conf. Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), Chennai, India, December 2012, pp. 2930.
    7. 7)
    8. 8)
      • 8. Thong, V.V.: ‘Impact of distributed generation on power system operation and control’. PhD thesis, Katholieke University, Leuven, 2006.
    9. 9)
    10. 10)
    11. 11)
      • 11. Gonzalez-Longatt, F.: ‘Impact of distributed generation over power losses on distribution system’. Proc. Ninth Int. Conf. Electrical Power Quality and Utilisation (EPQU 2007), Barcelona, Spain, October 2007, pp. 16.
    12. 12)
      • 12. ‘Electric Power Research Institute’. Available at http://www.epri.com/, accessed May 2015.
    13. 13)
      • 13. CIGRE study committee: ‘Impact of increasing the contribution of dispersed generation on the power system’. Final Report, Technical Report, 37, 2003.
    14. 14)
      • 14. ‘Institute of Electrical and Electronics Engineers’. Available at http://www.ieee.org, accessed May 2015.
    15. 15)
      • 15. International Energy Agency (IEA): ‘Distributed generation in liberalized electricity markets’. OECD/IEA, Paris, France, 2002.
    16. 16)
    17. 17)
    18. 18)
      • 18. Kashem, M.A., Negnevitsky, M., Ledwich, G.: ‘Optimal distributed generation parameters for reducing losses with economic consideration’. IEEE Power Engineering Society General Meeting, Tampa, FL, US, June 2007, pp. 18.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 23. Delfino, B.: ‘Modeling of the integration of distributed generation into the electrical system’. IEEE Conf. Power Society Summer Meeting, Chicago, USA, July 2002, pp. 170175.
    24. 24)
      • 24. Barker, P.P., de Mello, R.W.: ‘Determining the impact of distributed generation on power systems: part 1 – radial distribution systems’. IEEE PES Summer Meeting, Seattle, Washington, DC, USA, 2011, vol. 3, pp. 16451656.
    25. 25)
      • 25. Momoh, J.A., Meliopoulos, S., Saint, R.: ‘Centralized and distributed generated power systems – a comparison approach’, Future Grid Initiative White Paper, 2012, pp. 110.
    26. 26)
      • 26. The potential benefits of distributed generation and the rate related issues that may impede its expansion’. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. Available at http://www.energy.gov/oe/downloads/potential-benefits-distributed-generation-and-rate-related-issues-may-impede-its, accessed June 2015.
    27. 27)
      • 27. Jenkins, N., Ekanayake, J.B., Strbac, G.: ‘Distributed generation’, IET Renew. Energy Ser., 2010, 1, pp. 120.
    28. 28)
    29. 29)
      • 29. Borbely, A., Kreider, J.F.: ‘Distributed generation the power paradigm for the new millennium’ (CRC Press, Washington, DC, 2001), pp. 20250.
    30. 30)
      • 30. International Renewable Energy Agency: ‘Renewable power generation costs in 2014’. Available at http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis hydropower.pdf, accessed May 2015.
    31. 31)
      • 31. Narbel, P., Hansen, J.P., Lien, J.R.: ‘Energy technologies and economics’ (Springer, Cham, Switzerland, 2014), pp. 170180.
    32. 32)
      • 32. World Energy Council: ‘World energy perspective: cost of energy technologies’ (Bloomberg New Energy Finance, 2013), pp. 120.
    33. 33)
      • 33. Mahadanaarachchi, V.P., Ramakuma, R.: ‘Impact of distributed generation on distance protection performance – a review’. Proc. IEEE Conf. Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy, Pittsburgh, USA, July 2008, pp. 17.
    34. 34)
      • 34. Dulău, L.J.: ‘Hybrid wind and solar power system’. Second IFAC Workshop on Convergence of Information Technologies and Control Methods with Power Systems, 2013, Poster Session.
    35. 35)
    36. 36)
      • 36. Huishi, L., Jian, S., Sige, L.: ‘Reliability evaluation of distribution system containing microgrid’. Proc. Int. Conf. Electricity Distribution, Nanjing, China, September 2010, pp. 17.
    37. 37)
      • 37. Alkuhayli, A.A., Raghavan, S., Chowdhury, B.H.: ‘Reliability evaluation of distribution systems containing renewable distributed generations’. North American Power Symp. (NAPS), Champaign, 2012, pp. 16.
    38. 38)
      • 38. Wan, Y., Ela, E., Orwig, K.: ‘Development of an equivalent wind plant power’. National Renewable Energy Laboratory Conference Paper NREL/CP-550-48146, 2010, pp. 120.
    39. 39)
      • 39. Chaar, L.E., Lamont, L.A., Elzein, N.: ‘Wind energy technology – industrial update’. Proc. IEEE Power and Energy Society General Meeting, 2011, pp. 14.
    40. 40)
      • 40. Zobaa, A.F., Bansal, R.C.: ‘Handbook of renewable energy technology’ (World Scientific Publishers, Singapore, 2011).
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 44. Global Wind Energy Council (GWEC)’. Available at http://www.gwec.net/global-figures/graph, accessed May 2015.
    45. 45)
      • 45. Gabrovska, K., Wagner, A., Mihailov, N.: ‘Software system for simulation of electric power processes in photovoltaic-hybrid system’. Proc. Int. Conf. Computer Systems and Technologies, 2004, pp. 15.
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 49. Florida Solar Centre: ‘Solar electricity’. Available at http://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/types_of_pv.htm, accessed May 2015.
    50. 50)
      • 50. Tazvinga, H., Hove, T.: ‘Photovoltaic/diesel/battery hybrid power supply system: generator component sizing and energy performance analysis’ (VDM Verlag Dr. Müller Publishers, Saarbrücken, Germany, 2010), pp. 15.
    51. 51)
      • 51. International Renewable Energy Agency: ‘Renewable power generation costs in 2014’. Available at http://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=494, accessed June 2015.
    52. 52)
      • 52. International Renewable Energy Agency: ‘Technology roadmap: solar photovoltaic energy’. Available at https://www.iea.org/publications/freepublications/publication/pv_roadmap.pdf, accessed June 2015.
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • 57. Electrical energy storage: white paper: ‘Technical Report: prepared by electrical energy storage project team’. Int. Electro Technical Commission (IEC), 2011, pp. 150.
    58. 58)
      • 58. Molina, M.G.: ‘Dynamic modelling and control design of advanced energy storage for power system applications’ (InTech, Rijeka, Croatia, 2010), pp. 4060.
    59. 59)
    60. 60)
      • 60. Teleke, S.: ‘Energy storage overview: applications, technologies and economical evaluation’. White Paper, Quanta Technology, 2011, pp. 111.
    61. 61)
    62. 62)
      • 62. Makansi, J., Abboud, J.: ‘Energy storage: the missing link in the electricity value chain – an ESC white paper’. Energy Storage Council, 2002, pp. 123.
    63. 63)
      • 63. ‘Electric energy storage systems, Quanta Technology’. Available at http://www.quanta-technology.com/sites/default/files/doc-files/Energy_Storage-12-01-13.pdf, accessed August 2015.
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
      • 69. Bansal, R.C., Bhatti, T.S.: ‘Small signal analysis of isolated hybrid power systems: reactive power and frequency control analysis’ (Alpha Science International, Oxford, UK, 2008).
    70. 70)
    71. 71)
      • 71. Bansal, R.C.: ‘Automatic reactive power control of autonomous hybrid power systems’. PhD thesis, Indian Institute of Technology (IIT), Delhi, India, 2003.
    72. 72)
      • 72. Gupter, A., Saini, R.P., Sharma, M.P.: ‘Hybrid energy system for remote area – an action plan for cost effective power generation’. Proc. Third Int. Conf. Industrial and Information Systems, Kharagpur, India, December 2010.
    73. 73)
    74. 74)
    75. 75)
      • 75. Zerriffi, H.: ‘Rural electrification: strategies for distributed generation’ (Springer, London, 2010), pp. 510.
    76. 76)
      • 76. Bhadoria1, V.S., Pal, N.S., Shrivastava, V.: ‘A review on distributed generation definitions and DG impacts on distribution system’. Proc. Int. Conf. Advanced Computing and Communication Technologies (ICACCT™-2013), 2013, vol. 7, pp. 15.
    77. 77)
    78. 78)
      • 78. Gaonkar, D.N.: ‘Distributed generation’ (InTech, Rijeka, Croatia, 2010), pp. 93100.
    79. 79)
    80. 80)
      • 80. Dorji, T.: ‘Reliability assessment of distribution systems’. Master thesis, Norwegian University of Science and Technology, 2009.
    81. 81)
    82. 82)
      • 82. IEEE Std. 1366-2012: ‘IEEE guide for electric power distribution reliability indices’. 2012.
    83. 83)
    84. 84)
      • 84. Billinton, R., Allan, R.N.: ‘Reliability evaluation of the power systems’ (Plenum Press, New York, US, 1996, 2nd edn.), pp. 222243.
    85. 85)
      • 85. Asr, F.T., Kazemeni, A.: ‘Modelling the impact of an automated and control on the reliability distribution system’. Proc. IEEE Electrical Power & Energy Conf., 2008.
    86. 86)
      • 86. Endrenyi, J.: ‘Reliability modelling in electric power systems’ (John Wiley and Sons, Belfast, 1978).
    87. 87)
    88. 88)
      • 88. Momoh, J.A.: ‘Electric power distribution, automation, protection, and control’ (CRC Press, New York, USA, 2007), pp. 266290.
    89. 89)
      • 89. Billinton, R., Allan, R.N.: ‘Reliability evaluation of engineering systems: concepts and techniques’ (Plenum Press, New York, US, 1999, 2nd edn.), pp. 1213.
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
    97. 97)
    98. 98)
    99. 99)
    100. 100)
    101. 101)
    102. 102)
    103. 103)
      • 103. Elgerd, I.O.: ‘Electric energy system theory: an introduction’ (McGraw-Hill, New Delhi, India, 1971), pp. 50200.
    104. 104)
    105. 105)
    106. 106)
    107. 107)
    108. 108)
      • 108. Sheidaei, F., Shadkam, M., Zarei, M.: ‘Optimal distributed generation allocation in distribution systems employing ant colony to reduce’. 43rd Int. Universities Power Engineering Conf. (UPEC), 2008, pp. 15.
    109. 109)
    110. 110)
      • 110. Kuersuk, W., Ongsakul, W.: ‘Optimal placement of distributed generation using particle swarm optimization’. Proc. Australian Universities Power Engineering Conf. (AUPEC’ 06), 2006.
    111. 111)
    112. 112)
    113. 113)
    114. 114)
    115. 115)
      • 115. Kim, K.H., Lee, Y.J., Rhee, S.B., et al: ‘Dispersed generator placement using fuzzy-GA in distribution systems’. Proc. IEEE Power Engineering Society Summer Meeting, Chicago, USA, July 2002, pp. 11481153.
    116. 116)
    117. 117)
    118. 118)
    119. 119)
    120. 120)
    121. 121)
    122. 122)
    123. 123)
    124. 124)
    125. 125)
      • 126. Grenard, S., Pudjianto, D., Strbac, G.: ‘Benefits of active management of distribution network in the UK’. Proc. IEEE Conf. Electricity Distribution, 2005, pp. 15.
    126. 126)
      • 127. Joorabian, M., Ajodani, M., Baghdadi, M.: ‘A method for voltage regulation in distribution network equipped with OLTC transformers and DG units’. Proc. IEEE Conf. Power and Energy Engineering, 2010, pp. 15.
    127. 127)
    128. 128)
      • 129. Ignacio, J., Arriaga, P.: ‘Regulation of the power sector’ (Springer-Verlag, London, 2013), pp. 5060.
    129. 129)
    130. 130)
    131. 131)
    132. 132)
      • 133. Masters, G.M.: ‘Renewable and efficient electric power systems’ (John Wiley & Sons, Hoboken, New Jersey, 2004, 2nd edn.) pp. 170175.
    133. 133)
    134. 134)
    135. 135)
    136. 136)
    137. 137)
      • 138. Anbumozhi, V., Bowen, A., JOSE, P.D.: ‘Market-based mechanisms to promote renewable energy in Asia’. ERIA Discussion Paper Series, 2015, pp. 128.
    138. 138)
      • 139. Danish Energy Agency: ‘The Danish Energy Model Innovative, Efficient and Sustainable’. 2011, pp. 116.
    139. 139)
      • 140. International Renewable Energy Agency: ‘IRENA-GWEC: 30 Years of Policies for Wind Energy’. 2011, pp. 5463.
    140. 140)
      • 141. REN21 (2011): ‘Renewables 2011: Global status report’. 2011, p. 35.
    141. 141)
      • 142. REN21 (2012): ‘Renewables 2012: Global status report’. 2012, p. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0378
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0378
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address