Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Probabilistic analysis of solar photovoltaic self-consumption using Bayesian network models

Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/10/4/IET-RPG.2015.0360.html;jsessionid=7s44g76bbenhk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2015.0360&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 37. Fenton, N., Neil, M.: ‘Risk assessment and decision analysis with Bayesian networks’ (Boca Raton, Taylor & Francis, 2012).
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 17. DECC: ‘Solar photovoltaics deployment’: Feed-in Tariff Statistics, June, 2015. Available at https://www.gov.uk/government/statistics/solar-photovoltaics-deployment.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 30. Betts, T.R., Gottschalg, R.: ‘Irradiance data: solar irradiation data for Loughborough’, 2007 (Centre for Renewable Energy Systems Technology (CREST), Loughborough University, UK).
    16. 16)
      • 8. McKenna, E.: ‘Demand response of domestic consumers to dynamic electricity pricing in low-carbon power systems’. PhD thesis, Loughborough University, 2013.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 44. Bluesky LTD: 2014. Available at web address http://www.bluesky-world.com/.
    21. 21)
    22. 22)
      • 41. Koller, D., Pfeffer, A.: ‘Object-oriented Bayesian networks’. 13th Annual Conf. on Uncertainty in Artificial Intelligence, Providence, RI, 1997, pp. 302313.
    23. 23)
    24. 24)
      • 42. UK Buildings.: The Geoinformation Group, UK website. Available at http://www.geoinformationgroup.co.uk/products/ukbuildings, 2013.
    25. 25)
      • 45. Anderson, B.: ‘Estimating small area income deprivation: an iterative proportional fitting approach’ (Springer, 2013, vol. 6), pp. 4968.
    26. 26)
    27. 27)
      • 20. Leicester, P.A., Goodier, C., Rowley, P.: ‘Using a Bayesian network to evaluate the social, economic and environmental impacts of community deployed renewable energy’. Proc. of CISBAT, Clean Technology for Smart Cities and Buildings, Lausanne, 4–6 September 2013, p. 10. Available at https://www.dspace.lboro.ac.uk/2134/14472.
    28. 28)
    29. 29)
    30. 30)
      • 31. Dusabe, D., Munda, J., Jimoh, A.: ‘Modelling of cloudless solar radiation for PV module performance analysis’, J. Electr. Eng., 2009, 60, (4), pp. 192197.
    31. 31)
      • 5. Steuerrechtliche Auswirkungen des Direktverbrauchs von Strom aus Photovoltaikanlagen (§ 33 Abs. 2 EEG 2009) (Ministery of Environment (Bundesumweltministerium), Germany, 2008).
    32. 32)
    33. 33)
      • 13. Munzinger, M., Crick, F., Dayan, E.J., et al: ‘Domestic photovoltaic field trials’. Final Technical Report, URN: 06/2218, BRE and DTI, London, 2006.
    34. 34)
    35. 35)
    36. 36)
      • 23. Wieder, S.: ‘An introduction to solar energy for scientists and engineers’ (Wiley, New York, 1982, 1st edn.).
    37. 37)
      • 43. OS MasterMap: Topography Layer [GML geospatial data], Coverage: Various, Updated, Ordnance Survey, GB. Using: EDINA Digimap Ordnance Survey Service. Available at http://www.edina.ac.uk/digimap, downloaded: June 2014.
    38. 38)
    39. 39)
      • 34. Jensen, F., Nielsen, T.: ‘Bayesian networks and decision graphs’ (Springer, New York, 2007).
    40. 40)
    41. 41)
      • 39. Leicester, P.: ‘The development of Object Oriented Bayesian Networks to evaluate the social, economic and environmental impacts of solar PV’. PhD thesis, Loughborough University, 2015.
    42. 42)
    43. 43)
    44. 44)
      • 21. Voss, K., Sartori, I., Napolitano, A., et al: ‘Load matching and grid interaction of net zero energy buildings’ (EuroSun, Graz Austria, 29 September–October 12010).
    45. 45)
      • 18. Department of Energy and Climate Change: ‘National Energy Efficiency Data-Framework, 2014 [computer file]’. SN: 7518: 10.5255/UKDA-SN-7518-1, UK Data Archive [distributor], Colchester, Essex, July2014.
    46. 46)
      • 33. Pearl, J.: ‘Bayesian networks. [Los Angeles, Calif.]’ (UCLA, Computer Science Department, 1985).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0360
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address