access icon free Short-term operational planning framework for virtual power plants with high renewable penetrations

This study proposes a two-stage operational planning framework for the short-term operation of the virtual power plant (VPP). In the first stage, a stochastic bidding model is proposed for the VPP to optimise the bids in the energy market, with the objective to maximise its expected economic profit. The imbalance costs of the VPP are considered in the bidding model. In the second stage, a model predictive control (MPC)-based dispatch model is proposed to optimise the real-time control actions. In the real-time dispatch model, the real-time information of the resources is continuously updated, and the deviations between the actual energy output and the contracted energy over the MPC control horizon are minimised. The simulation results prove the efficiencies of the proposed method.

Inspec keywords: power markets; minimisation; predictive control; stochastic processes; power generation economics; power generation dispatch; power generation planning; power generation control

Other keywords: VPP; virtual power plants; short-term operational planning framework; actual energy output minimisation; expected economic profit maximisation; energy market; contracted energy minimisation; stochastic bidding model; MPC-based dispatch model; model predictive control-based dispatch model; high renewable penetrations

Subjects: Optimal control; Power system planning and layout; Optimisation techniques; Optimisation techniques; Power system management, operation and economics; Control of electric power systems; Other topics in statistics; Other topics in statistics

References

    1. 1)
    2. 2)
    3. 3)
      • 27. MatPower: [Online]. Available at http://www.pserc.cornell.edu//matpower/.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 26. Wood, A., Wollenberg, B.: ‘Power generation, operation, and control’ (Hoboken, New Jersey, Wiley, 2013, 3rd edn.).
    8. 8)
      • 12. Tsikalakis, A., Hatziargyriou, N.: ‘Centralized control for optimizing microgrids operation’. Proc. IEEE PES General Meeting, 2011.
    9. 9)
    10. 10)
    11. 11)
      • 29. Vestas: [Online]. Available at http://www.vestas.com.
    12. 12)
    13. 13)
    14. 14)
      • 31. Differential Evolution Codes, [Online]. Available at http://www1.icsi.berkeley.edu/~storn/code.html.
    15. 15)
      • 10. Chalkiadakis, G., Robu, V., Kota, R., et al: ‘Cooperatives of distributed energy resources for efficient virtual power plants’. Proc. Tenth Int. Conf. on Autonomous and Multiagent Systems, 2011, vol. 2, pp. 787794.
    16. 16)
    17. 17)
      • 19. A Guide to Lead-Acid Batteries, [Online]. Available at http://www.solar2renewableenergy.com.
    18. 18)
      • 6. Aloini, D., Crisostomi, E., Raugi, M., et al: ‘Optimal power scheduling in a virtual power plant’. Proc. Second IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, 2011.
    19. 19)
    20. 20)
    21. 21)
      • 22. Clarke, D.W.: ‘Advances in model based predictive control’ (Oxford University Press, UK, 1994).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 2. Christophe, K., Berseneff, B., Hadjsaid, N., et al: ‘On the concept and the interest of virtual power plant: some results from the European project Fenix’. Proc. IEEE Power and Energy Society General Meeting, 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0358
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading