http://iet.metastore.ingenta.com
1887

Probabilistic method for the operation of three-phase unbalanced active distribution networks

Probabilistic method for the operation of three-phase unbalanced active distribution networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a probabilistic multi-objective optimisation method for the operation of three-phase distribution networks incorporating active network management (ANM) schemes including coordinated voltage control and adaptive power factor control. The proposed probabilistic method incorporates detailed modelling of three-phase distribution network components and considers different operational objectives. The method simultaneously minimises the total energy losses of the lines from the point of view of distribution network operators and maximises the energy generated by photovoltaic (PV) cells considering ANM schemes and network constraints. Uncertainties related to intermittent generation of PVs and load demands are modelled by probability density functions (PDFs). Monte Carlo simulation method is employed to use the generated PDFs. The problem is solved using ɛ-constraint approach and fuzzy satisfying method is used to select the best solution from the Pareto optimal set. The effectiveness of the proposed probabilistic method is demonstrated with IEEE 13- and 34-bus test feeders.

References

    1. 1)
      • 1. The Smart Grid: an Introduction. Available at http://www.oe.energy.gov/DocumentsandMedia/DOE_SG_Book_Single_Pages.pdf.
    2. 2)
      • 2. Katiraei, F., Mauch, K., Dignard-Bailey, L.: ‘Integration of photovoltaic power systems in high-penetration clusters for distribution networks and mini-grids’, Int. J. Distrib. Energy Resour., 2007, 3, (3), pp. 207224.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Juanuwattanakul, P., Masoum, M.A.S.: ‘Voltage stability enhancement for unbalanced multiphase distribution networks’. Proc. 2011 IEEE Power and Energy Society General Meeting, July 2011, pp. 16.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 11. Lu, F.C., Hsu, Y.Y.: ‘Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation’, IEEE Trans. Power Syst., 1997, 12, (2), pp. 681688.
    12. 12)
      • 12. Dall'Anese, E., Giannakis, G.B., Wollenberg, B.F.: ‘Economic dispatch in unbalanced distribution networks via semidefinite relaxation’, available http://arxiv.org/abs/1207.0048.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Hsu, Y.Y., Lu, F.C.: ‘A combined artificial neural network-fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 12651271.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 24. Available at https://solaranywhere.com/Public/SelectData.aspx.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Kundur, P.: ‘Power system stability and control’ (EPRI Power Engineering Series, McGraw-Hill, 1994).
    29. 29)
      • 29. Kersting, W.H., ‘Distribution system modeling and analysis’ (CRC Press, 2007).
    30. 30)
    31. 31)
      • 31. Available at http://solar.org.au/papers/00papers/Caliao.PDF.
    32. 32)
    33. 33)
    34. 34)
      • 34. Fikri, Z.: ‘Statistical load analysis for distribution network planning’. Ph.D. dissertation, Dept. Elect. Power Syst. Eng., Royal Inst. Technol., Stockholm, Sweden, 1975.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 38. Available at http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-history-formulation-testing.pdf.
    39. 39)
      • 39. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, New York, NY, USA, 2001, vol. 16).
    40. 40)
      • 40. Available at http://ewh.ieee.org/soc/pes/dsacom/testfeeders/.
    41. 41)
      • 41. Integration of Storage in Electrical Distribution Systems and its Impact on the Depth of Penetration of DG. Available at http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/fichier.php/codectec/En/2009-174/2009-174.pdf.
    42. 42)
      • 42. Brooke, A., Kendrick, D., Meeraus, A., et al: ‘GAMS A user's guide’ (GAMS Development Corporation, Washington DC, 1998).
    43. 43)
      • 43. Byrd, R.H., Nocedal, J., Waltz, R.A.: ‘KNITRO: an integrated package for nonlinear optimization’. Large-Scale Nonlinear Optimization, New York, Springer-Verlag, 2006, pp. 3559.
    44. 44)
    45. 45)
      • 45. Kim, I.Y.: ‘Adaptive weighted sum method for multiobjective optimization’ Available at http://web.mit.edu/deweck/www/PDF_archive/2%20Refereed%20Journal/2_12_SMO_AWSMOO1_deWeck_Kim.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0334
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0334
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address