access icon free Optimising the European transmission system for 77% renewable electricity by 2030

To spur Europe to meet ambitious CO2 emission reduction targets, Greenpeace has developed scenarios for each country to increase its electricity generation from renewable sources. Energynautics was commissioned by Greenpeace to model and optimise the grid extensions in Europe necessary to integrate these large shares of renewables (77% of the total electricity supply by 2030, including 53% from wind and solar). The results and further analysis of the data are presented here. It was found that by preferring high voltage direct current rather than alternating current network extensions, the overall grid upgrades in Europe (measured as the length of new transmission lines) can be reduced by a third. By allowing a small amount of curtailment of variable renewable sources, a disproportionately large number of the necessary grid extensions can be avoided. In addition, the accuracy of decoupling active from reactive power flows is analysed.

Inspec keywords: power transmission lines; electric power generation; carbon compounds; air pollution control; power grids

Other keywords: emission reduction targets; renewable sources; renewable electricity; data analysis; grid extensions; CO2; alternating current network extensions; high voltage direct current; reactive power flows; European transmission system; electricity generation; transmission lines

Subjects: Power transmission, distribution and supply

References

    1. 1)
      • 8. Schaber, K., Steinke, F., Mühlich, P., et al: ‘Parametric study of variable renewable energy integration in Europe: advantages and costs of transmission grid extensions’, Energy Policy, 2012, 42, pp. 298508, available at http://dx.doi.org/10.1016/j.enpol.2011.12.016.
    2. 2)
      • 20. Ahlhaus, P., Stursberg, P.: ‘Transmission capacity expansion: an improved transport model’. 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013, pp. 15.
    3. 3)
      • 13. Prandtl, L.: ‘The mechanics of viscous flows’ (Springer, Berlin, 1935), vol. 3, pp. 34208.
    4. 4)
    5. 5)
    6. 6)
      • 14. European Wind Energy Association: ‘TradeWind: Integrating Wind: Developing Europe's power market for the large-scale integration of wind power’. Technical Report, 2009.
    7. 7)
      • 31. European Regulators’ Group for Electricity and Gas: ‘Treatment of Losses by Network Operators: ERGEG Position Paper for public consultation’, link to pdf, 2008.
    8. 8)
      • 1. Greenpeace International: ‘Energy [R]evolution: A Sustainable World Energy Outlook’, available at http://www.energyblueprint.info/.
    9. 9)
      • 28. Background outlines of Europe comes from Natural Earth, free vector and raster map data at http://naturalearthdata.com.
    10. 10)
      • 12. National Center for Environmental Predictions (NCEP): ‘NCEP-DOE Reanalysis 2’, 2013. Data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.
    11. 11)
    12. 12)
      • 24. Grainger, J.J., Stevenson, W.D.: ‘Power system analysis’ (McGraw-Hill, New York, 2014).
    13. 13)
      • 22. Egerer, J., Lorenz, C., Gerbaulet, C.: ‘European electricity grid infrastructure expansion in a 2050 context’. 10th Int. Conf. on the European Energy Market, 2013.
    14. 14)
      • 2. Greenpeace International, EREC: ‘Renewables 24/7 Infrastructure Needed to Save the Climate’, available at http://www.greenpeace.org/international/en/publications/reports/renewables-24-7/, 2009.
    15. 15)
      • 11. ENTSO-E: ‘Ten Year Network Development Plan 2012’. Technical Report, European Network of Transmission System Operators for ElectricitywNTSO-E), 2012.
    16. 16)
      • 6. Teske, S., Brown, T., Tröster, E., et al: ‘powE[R] 2030: A European Grid for 3/4 Renewable Electricity by 2030’, available at http://www.greenpeace.de/files/publications/201402-power-grid-report.pdf, 2014.
    17. 17)
    18. 18)
      • 15. HelioClim Insolation Database, 2013.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 3. Tröster, E., Kuwahata, R., Thomas Ackermann, T.: ‘European Grid Study 2030/2050’, available at http://www.energynautics.com/downloads/competences/energynautics_EUROPEAN-GRID-STUDY-2030-2050.pdf, 2011.
    24. 24)
    25. 25)
      • 30. Siemens: ‘UHVDC Transmission System: Benefits’, available at http://www.energy.siemens.com/hq/en/power-transmission/hvdc/hvdc-ultra/#content=Benefits, 2011.
    26. 26)
      • 27. Brown, T., Cherevatskiy, S., Tröster, E.: ‘Transporting renewables: systematic planning for long-distance HVDC lines’, presented at EWEA 2013 in Vienna.
    27. 27)
    28. 28)
    29. 29)
      • 10. Papaemmanouil, A., Tuan, L.A., Andersson, G., et al: ‘A cost-benefit analysis of transmission network reinforcement driven by generation capacity expansion’. Power and Energy Society General Meeting, 2010, pp. 18.
    30. 30)
      • 4. Huber, M., Dorfner, J., Hamacher, T.: ‘Electricity system optimization in the EUMENA region’, Munich, 2012, available at http://mediatum.ub.tum.de/doc/1171502/1171502.pdf.
    31. 31)
      • 7. Czisch, G.: ‘Szenarien zur zukünftigen Stromversorgung’ (Universität Kassel, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0135
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading