http://iet.metastore.ingenta.com
1887

Comparison between thin-film solar cells and copper–indium–gallium–diselenide in Southeast Asia

Comparison between thin-film solar cells and copper–indium–gallium–diselenide in Southeast Asia

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study gives a selective overview of the technological status and comparison of selected thin-film solar cells. In the first part of this study, the development of thin-film solar cells is assessed, followed by comparison of the design structure among those thin-film solar cells and the current status of thin-film solar cells efficiency. The advantages and disadvantages of thin-film solar cells are also discussed. In the second part of this study, a comprehensive review is done on research upon copper–indium–gallium–diselenide (CIGS) thin-film solar cell in Southeast Asia countries. As compared with other regions of the world, Southeast Asia has not started the large manufacturing of CIGS yet, however, the research on it has been started.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Labouret, A., Villoz, M.: ‘Solar panel technologies’. Solar Photovoltaic Energy, Institution of Engineering and Technology, 2010, pp. 53110.
    7. 7)
    8. 8)
    9. 9)
      • 9. Vasekar, P.S., Dhakal, T.P.: ‘Thin film solar cells using earth-abundant materials’ (INTECH Open Access Publisher, 2013).
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 15. Bedell, S.W., Hekmatshoartabari, B., Sadana, D.K., et al: ‘Multi-junction iii-v solar cell’. Google Patents, 2013.
    16. 16)
    17. 17)
    18. 18)
      • 18. Wieting, R.D.: ‘CIS manufacturing at the megawatt scale’ (sans titre, 2002), pp. 478483.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 30. Bonnet, D.: ‘CdTe thin-film PV modules’, in McEvoy, A., Markvart, T., Castaner, L. (Eds): ‘Practical Handbook of Photovoltaics: Fundamentals and Applications’ (Elsevier Ltd, Waltham, 2003), pp. 333366.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 44. Suryawanshi, M., Agawane, G., Bhosale, S., et al: ‘CZTS based thin film solar cells: a status review’, Mater. Sci. Technol., 2013, 28, (1/2), pp. 98109.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
      • 67. Brusdeylins, C., Vartmann, A.: ‘New best mark in thin-film solar performance with 21.7 percent efficiency’. Zentrum für Sonnenenergieund Wasserstoff-Forschung Baden-Württemberg (ZSW), Stuttgart, Germany, 2014.
    68. 68)
    69. 69)
    70. 70)
      • 70. Wang, W., Winkler, M.T., Gunawan, O., et al: ‘Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency’, Adv. Energy Mater., 2014, 4, (7), pp. 15.
    71. 71)
    72. 72)
      • 72. Sevvana, S., Zubeck, B., Cheung, K.K., Mackie, N.: ‘A study of fluorine doping azo transparent conductive oxide films for thin film copper indium gallium selenide solar cells on flexible substrates’. IEEE 40th Photovoltaic Specialist Conf. (PVSC, 2014), 2014.
    73. 73)
    74. 74)
      • 74. Liao, Y.-K., Chuang, T.-Y., Hsieh, D.-H., et al: ‘An 11% efficiency boost of flexible inkjet-printing Cu (In, Ga) Se2 solar cells by non-radiative energy transfer of nano-crystal quantum dots’. CLEO: Applications and Technology, 2013. Optical Society of America.
    75. 75)
    76. 76)
      • 76. Vasko, A., Liu, X., Compaan, A.: ‘All-sputtered CdS/CdTe solar cells on polyimide’. 34th IEEE Photovoltaic Specialists Conf. (PVSC, 2009), 2009.
    77. 77)
      • 77. Perrenoud, J., Buecheler, S., Tiwari, A.: ‘Flexible CdTe solar cells and modules: challenges and prospects’. SPIE Solar Energy+Technology, 2009. International Society for Optics and Photonics.
    78. 78)
    79. 79)
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
      • 85. Tuttle, J.R., Szalaj, A., Keane, J.: ‘A 15.2% AMO/1433 W/kg thin-film Cu (In, Ga) Se2 solar cell for space applications’. Conf. Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conf. 2000, 2000.
    86. 86)
    87. 87)
      • 87. Reinhard, P., Chirila, A., Pianezzi, F., et al: ‘High efficiency flexible Cu (In, Ga) Se2 solar cells’. Twentieth Int. Workshop onActive-Matrix Flatpanel Displays and Devices (AM-FPD 2013), 2013.
    88. 88)
    89. 89)
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
      • 95. Becker, F., Frenck, H.-J.: ‘CdTe thin film modules: Basic developments, optimizing performance and considerations in module design’, Photovolta. Int., 2011, 12, pp. 9498.
    96. 96)
    97. 97)
    98. 98)
    99. 99)
    100. 100)
      • 100. Polizzotti, A., Falsgraf, E., Schual-Berke, J., Johal, M.: ‘Investigating new materials and architectures for Grätzel cells’ (INTECH Open Access Publisher, 2012).
    101. 101)
    102. 102)
    103. 103)
    104. 104)
    105. 105)
    106. 106)
    107. 107)
    108. 108)
    109. 109)
    110. 110)
    111. 111)
    112. 112)
    113. 113)
    114. 114)
    115. 115)
    116. 116)
    117. 117)
    118. 118)
    119. 119)
    120. 120)
    121. 121)
    122. 122)
    123. 123)
    124. 124)
    125. 125)
    126. 126)
    127. 127)
      • 127. Khoshsirat, N., Md Yunus, N.A., Nizar, H.M., Shafie, S., Amin, N.: ‘Optimization of CIGS thin film solar cells via numerical simulation’. Int. Symp. on Applied Engineering and Sciences (SAES 2013), 2013. Kyushu Institute of Technology.
    128. 128)
      • 128. Khoshsirat, N., Md Yunus, N., Hamidon, M.N., Shafie, S., Amin, N.: ‘ZnO doping profile effect on CIGS solar cells efficiency and parasitic resistive losses based on cells equivalent circuit’. IEEE Int. Conf. on Circuits and Systems (ICCAS, 2013), 2013.
    129. 129)
      • 129. Khoshsirat, N., Yunus, N.A.M.: ‘Numerical simulation of CIGS thin film solar using SCAPS-1D’. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology 2013, 2013, Putra Jaya, Malaysia.
    130. 130)
      • 130. Hossain, M.S., Aliyu, M.M., Matin, M.A., et al: ‘Numerical analysis on ZnxCd1-x,S/CdTe solar cells with different buffer layers, front and back contacts’. IEEE Regional Symp. on MicroandNanoelectronics (RSM, 2011), 2011.
    131. 131)
    132. 132)
      • 132. Fathil, M.F.M., Md Arshad, M.K., Hashim, U., et al: ‘The impact of minority carrier lifetime and carrier concentration on the efficiency of CIGS solar cell’. IEEE Int. Conf. on Semiconductor Electronics (ICSE, 2014), 2014.
    133. 133)
      • 133. Khoshsirat, N., Md Yunus, N.A., Hamidon, M.N., Shafie, S., Amin, N.: ‘Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS’, Pertanika J. Sci. Technol., 2015, 23, (2), pp. 241250.
    134. 134)
    135. 135)
      • 135. Amin, N., Hossain, M.I., Hamzah, N.R., Chelvanathan, P.: ‘Physical and optical properties of In2S3 thin films deposited by thermal evaporation technique for CIGS solar cells’. IEEE First Conf. on Clean Energy and Technology (CET, 2011), 2011, IEEE Xplore, Kuala Lumpur, Malaysia.
    136. 136)
    137. 137)
    138. 138)
    139. 139)
    140. 140)
    141. 141)
    142. 142)
    143. 143)
    144. 144)
    145. 145)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0114
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address