Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Comparison between the particle swarm optimisation and differential evolution approaches for the optimal proportional–integral controllers design during photovoltaic power plants modelling

This study deals with photovoltaic power plant modelling and its integration within the distribution network. It presents a simulation model of a whole photovoltaic power plant including the solar cells, boost converter with maximal power point tracking, voltage-oriented control and inductor-capacitor-inductor (LCL) filter. In such a sense, the applied inverter has many advantages such as a controllable power factor and sinusoidal input current, while the switching frequency of the power switch is relatively high. Therefore, it could cause high-frequency harmonics around the switching frequency. The traditional way of solving these problems is the usage of LCL filters, where the basic requirement is to achieve sufficient filtering with inductor and capacitor values as small as possible. In addition, emphasis is given to a comparison between two optimisation methods – particle swarm optimisation and differential evolution that are used for the parameters of proportional–integral (PI) controllers determination. These PI controllers represent the main part of the voltage-oriented control.

References

    1. 1)
    2. 2)
      • 30. Lee, K.Y., El-Sharkawi, M.A.: ‘Modern heuristic optimization techniques – theory and applications to power systems’ (Wiley, 2008).
    3. 3)
    4. 4)
      • 24. Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘Passive filter design for three-phase inverter interfacing in distributed generation’, Electr. Power Qual. Utilisation, 2007, 8, (2), pp. 4958.
    5. 5)
    6. 6)
      • 2. Ghani, Z.A., Hannan, M.A., Mohamed, A.: ‘Investigation of three-phase grid-connected inverter for photovoltaic application’, Prz. Elektrotech., 2012, 88, (7), pp. 813.
    7. 7)
    8. 8)
    9. 9)
      • 25. Araujo, S.V., Engler, A., Sahan, B., et al: ‘LCL filter design for grid-connected NPC inverters in offshore wind turbines’. The Seventh Int. Conf. on Power Electronics, Daegu, Korea, 2007.
    10. 10)
    11. 11)
      • 40. Štumberger, G., Deželak, K., Rošer, M., et al: ‘Medium-voltage distribution feeders in open-loop and closed-loop arrangement’. Int. Conf. on Renewable Energies and Power Quality ICREPQ'12, Spain, 2012.
    12. 12)
      • 11. Boscaino, V., Cipriani, G., Di Dio, V., et al: ‘A simple and accurate model of photovoltaic modules for power system design’. Int. Conf. in Ecological Vehicles and Renewable Energies (EVER), 2014, pp. 16.
    13. 13)
      • 36. Storn, R.M., Price, K.V.: ‘Minimizing the real functions of the ICEC'96 contest by differential evolution’. IEEE Conf. on Evolutionary Computation, Negoya, Japan, 1996.
    14. 14)
      • 10. Rodrigues, E.M.G., Melício, R., Mendes, V.M.F., et al: ‘Simulation of a solar cell considering single-diode equivalent circuit model’. Int. Conf. on Renewable Energies and Power Quality, ICREPQ'11, Spain, 2011.
    15. 15)
    16. 16)
      • 18. Calavia, M., Perie, J.M., Sanz, J.F., et al: ‘Comparison of MPPT strategies for solar modules’. Int. Conf. on Renewable Energies and Power Quality ICREPQ'10, Spain, 2010.
    17. 17)
      • 17. Texas Instruments: ‘Basic calculation of a boost converter's power stage’. Application Report – Low Power DC/DC Application, 2010.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 13. Durgadevi, A., Arulselvi, S., Natarajan, S.P.: ‘Photovoltaic modeling and its characteristics’. Int. Conf. in Emerging Trends in Electrical and Computer Technology, 2011, pp. 469475.
    22. 22)
    23. 23)
    24. 24)
      • 22. Sun, W., Chen, Z., Wu, X.: ‘Intelligent optimize design of LCL filter for three-phase voltage-source PWM rectifier’. Proc. of the Sixth Int. Power Electronics and Motion Control Conf. IPEMC'09, Wuhan, 2009.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 29. Nandurkar, S.R., Rajeev, M.: ‘Design and simulation of three phase inverter for grid connected photovoltaic systems’. Biennial National Conf., NCNTE'12, 2012.
    29. 29)
    30. 30)
      • 31. Yang, X.S.: ‘Engineering optimization – an introduction with metaheuristic applications’ (Wiley, 2010).
    31. 31)
    32. 32)
    33. 33)
      • 9. Makhlouf, M., Messai, F., Benalla, H.: ‘Modeling and simulation of grid-connected hybrid photovoltaic/battery distributed generation system’, Can. J. Electr. Electron. Eng., 2012, 3, (1), pp. 110.
    34. 34)
    35. 35)
    36. 36)
      • 6. Walker, G.R.: ‘Evaluating MPPT converter topologies using a MATLAB PV model’. Australasian Universities Power Engineering Conf., AUPEC'00, Brisbane, Australia, 2000.
    37. 37)
    38. 38)
      • 34. Bai, Q.: ‘Analysis of particle swarm optimization algorithm’, Comput. Inf. Sci., 2010, 3, (1), pp. 180184.
    39. 39)
      • 5. Rahim, N.A., Mekhilef, S.: ‘Implementation of three-phase grid connected inverter for photovoltaic solar power generation system’. Int. Conf. on Power System Technology, Malaysia, October 2002.
    40. 40)
      • 26. Antoniewicz, P.: ‘Predictive control of three phase AC/DC converters’. PhD dissertation, Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, 2009.
    41. 41)
      • 14. Essakiappan, S., Enjeti, P.N., Balog, R.S., et al: ‘A new multilevel converter for megawatt scale solar photovoltaic utility integration’. Applied Power Electronics Conf. and Exposition, USA, February 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0108
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0108
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address