Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Recognition and assessment of different factors which affect flicker in wind turbines

Similar to other distributed generation sources, wind turbines cause power quality disturbances (PQDs) issues in power systems. One of the most important PQDs that has bad effects on sensitive loads is flicker. In this study, an algorithm is presented for assessment and recognition of different factors causing flicker of wind turbines. Some aerodynamic factors (wind shear and tower shadow) and some mechanical factors (blade pitching errors, gearbox tooth crash and turbine blade break down) are modelled using fixed speed wind turbines. Then, wavelet transform and S-transform are used to extract some dominant features voltage. Then, in order to avoid large dimension of feature vector, Relieff feature selection method is applied to extracted features. The probabilistic neural network (PNN) is used to classify above-mentioned factors. The only adjusted parameter of the PNN classifier is determined by using the particle swarm optimisation technique. Moreover, the short-term severity of flicker (Pst) is calculated for each type of fault as extra features to increase the severability of extracted features. Results show that the classifier can detect different causes of flicker event with high detection accuracy.

References

    1. 1)
      • 24. Stockwell, R.G.: ‘Why use the S-transform?’, AMS Pseudo-diff. Oper., Partial Diff. Equ. Time–freq. Anal., 2007, 52, pp. 279309.
    2. 2)
    3. 3)
      • 11. Chavan, D.S., Rana, A., Singh, M.R., et al: ‘Computation of flicker due to vertical wind shear in a wind turbine sited on a hill using wind tunnel’. Power Engineering and Optimization Conf., March 2014, pp. 231236.
    4. 4)
    5. 5)
      • 12. Chavan, D.S., Rana, A., Singh, M.R., et al: ‘Modeling of flicker due to vertical wind shear initiated by vegetation in a riverside wind turbine using wind tunnel’, Devices Circuits Syst. Conf, IEEE, March 2014, pp. 16.
    6. 6)
    7. 7)
      • 2. Baggini, A.: ‘Handbook of power quality’ (John Wiley & Sons Ltd., New York, 2008).
    8. 8)
      • 21. Abdulhamed Moh Suliman, H., Katebi, R.: ‘Wind turbine control using PI pitch angle controller’. IFAC Conf. on Advances in PID Control, March 2012.
    9. 9)
      • 10. Chavan, D.S., Bhide, S.D., Karandikar, P.B., et al: ‘Effect of vertical wind shear on flicker in wind farm’. Global Humanitarian Technology Conf.: South Asia Satellite, August 2013, pp. 203208.
    10. 10)
      • 3. Dugan Roger, C., Mark, F., McGranaghan, H., et al: ‘Electrical power systems quality’ (McGraw-Hill, New York, 2003).
    11. 11)
      • 8. Masters Gilbert, M.: ‘Renewable and efficient electric power systems’ (John Wiley & Sons, New York, 2013).
    12. 12)
      • 18. El-Tamaly, H.H., Wahab, M.A., Kasem Ali, H.: ‘Voltage fluctuation produced from wind turbines directly connected to grid’. In Tenth Int. Middle East Power Systems Conf., Mepcon’ 10th, Port-Said, Egypt, December 2005, pp. 1315.
    13. 13)
    14. 14)
      • 5. Zhang, Y., Hu, W., Chen, Z., et al: ‘Flicker mitigation strategy for a doubly fed induction generator by torque control’, IET Renew. Power Gener., 2014, 8, (2), pp. 9199.
    15. 15)
      • 17. Sorensen, P., Andresen, B., Fortmann, J., et al: ‘Modular structure of wind turbine models in IEC 61400-27-1’, Power Energy Soc. Gen. Meet. Conf, IEEE, July 2013, pp. 15.
    16. 16)
      • 19. Singh, M., Santoso, S.: ‘Dynamic models for wind turbines and wind power plants’, Natl. Renew. Energy Lab., January 2008–May 2011.
    17. 17)
    18. 18)
      • 28. Hajian, M., Akbari Foroud, A., Abdoos, A.A.: ‘New automated quality recognition system for online/offline monitoring’, Neuro-computing, 2014, 128, pp. 389406.
    19. 19)
      • 1. Kennedy Barry, W.: ‘Power quality primer’ (McGraw-Hill, New York, 2000).
    20. 20)
    21. 21)
    22. 22)
      • 7. Das, S., Karnik, N., Santoso, S.: ‘Time-domain modeling of tower shadow and wind shear in wind turbines’, Int. Sch. Res. Not., 2011, 2011, pp. 111..
    23. 23)
    24. 24)
      • 26. Hajian, M., Akbari Foroud, A., et al: ‘Discrimination of power quality distorted signals based on probabilistic neural network’, IJE Trans. C, Asp., 2014, 27, pp. 881888.
    25. 25)
    26. 26)
      • 16. IEC61400-21.: ‘Wind Turbines – Part 21: Measurement and Assessment of Power Quality Characteristics of Grid Connected Wind Turbines’, 2007.
    27. 27)
      • 9. Chavan, D.S., Karandikar, P.B., Pande, A.K., et al: ‘Assessment of flicker owing to turbulence in a wind turbine placed on a hill using wind tunnel’. Circuit, Power and Computing Technologies Int. Conf., IEEE, March 2014. pp. 560566.
    28. 28)
      • 6. Dolan, D.S., Lehn, P.W.: ‘Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow’. Power Systems Conf. and Exposition (PSCE'06), 2006, pp. 20502057.
    29. 29)
      • 30. Sammut, C., and Webb, G.I.: ‘Encyclopedia of machine learning’, (Springer Science & Bussiness Media, New-York, 2010).
    30. 30)
      • 15. IEC61000–4-15.: ‘Electromagnetic compatibility (EMC) – part 4: testing and measurement techniques-section 15: flickermeter functional and design Specifications’, 1997.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0419
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0419
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address