access icon free Dynamic modelling of wind turbine gearbox bearing loading during transient events

Wind turbine gearbox bearings (WTGBs) are the most reliability critical component in wind turbine gearboxes because of their high failure rate and long downtime-per-failure. Current design methods predict bearing failure-by-fatigue life models. However, premature WTGB failures have been observed by many other modes. This study presents the development of a multibody dynamic gearbox model, used to determine maximum bearing contact stresses from laboratory measured shaft torque data during normal operation and shutdown conditions. The model was validated by comparing its results to other models of the 750 kW National Renewable Energy Laboratory test drive train by the Gearbox Reliability Collaborative. During normal operation, the maximum contact stress experienced by the planetary stage bearings exceeded recommended levels by 1% and during shutdown by 15%. High-speed shaft bearings also exceeded recommended levels during shutdown by 18%.

Inspec keywords: power generation reliability; gears; power system transients; wind turbines; fatigue; wind power plants; failure analysis

Other keywords: planetary stage bearings; WTGB failures; high failure rate; shaft torque data; National Renewable Energy Laboratory test drive train; wind turbine gearbox bearing dynamic modelling; reliability critical component; multibody dynamic gearbox model; long downtime-per-failure; bearing failure-by-fatigue life models; maximum bearing contact stresses; high-speed shaft bearings; power 750 kW; transient events

Subjects: Wind power plants; Reliability

References

    1. 1)
      • 24. Ricardo, P.L.C.: ‘VALDYN user's manual’, 2012.
    2. 2)
      • 12. Sankar, S., Nataraj, M., Raja, V.: ‘Failure analysis of bearing in wind turbine generator gearbox’, J. Inf. Syst. Commun., 2012, 3, (1), pp. 302309.
    3. 3)
      • 22. LaCava, W., Guo, Y., Xing, Y., Moan, T.: ‘Determining wind turbine gearbox model complexity using measurement validation and cost comparison’. Conf. Paper, National Renewable Energy Laboratory, NREL/CP-5000-54545, 2012.
    4. 4)
      • 14. Luyckx, J.: ‘WEC failure mode on roller bearings’. Presentation at Wind Turbine Tribology Seminar, Hansen Transmissions, 2011.
    5. 5)
      • 20. Oyague, F.: ‘Progressive dynamical drive train modeling as part of NREL gearbox reliability collaborative’. Technical Report, NREL/CP-500-43473, National Renewable Energy Laboratory, 2008.
    6. 6)
    7. 7)
      • 2. Musial, W., Butterfield, S., McNiff, B.: ‘Improving wind turbine gearbox reliability’ (National Renewable Energy Laboratory, Boulder, Colorado, 2007).
    8. 8)
      • 29. Hertz, H.: Translated and reprinted in English in ‘Hertz's miscellaneous papers’ (Macmillan & Co., London, UK, 1896).
    9. 9)
    10. 10)
      • 30. Guo, Y., Keller, J., LaCava, W.: ‘Combined effects of gravity, bending moment, bearing clearance, and input torque on wind turbine planetary gear load sharing’. Conf. Paper, National Renewable Energy Laboratory, NREL/CP-5000-55968, 2012.
    11. 11)
      • 13. Rosinski, J., Smurthwaite, D.: ‘Troubleshooting wind gearbox problems’. Article, Gear Solutions, 2010.
    12. 12)
      • 8. Commission of the European communities: ‘Offshore wind energy: action needed to deliver on the energy policy objectives for 2020 and beyond’. Technical Report, COM, 2008, p. 768.
    13. 13)
      • 15. Cambell, F.: ‘Elements of metallurgy and engineering alloys’ (ASM International, OH, 2008), pp. 243262.
    14. 14)
    15. 15)
      • 4. British Standards Institution: ‘BS ISO 281:2007: rolling bearings – dynamic load ratings and rating life’, 2008.
    16. 16)
    17. 17)
      • 31. Lacava, W., Keller, J., Mcniff, B.: ‘Gearbox reliability collaborative: test and model investigation of sun orbit and planet load share in a wind turbine gearbox’. Conf. Paper, National Renewable Energy Laboratory, NREL/CP-5000-54618, 2012.
    18. 18)
      • 6. Jain, S., Hunt, H.: ‘A dynamic model to predict the occurrence of skidding in wind turbine gearbox bearings’, J. Phys., 2011, 305, (1).
    19. 19)
      • 10. Stadler, K., Stubenrauch, A.: ‘Premature bearing failures in industrial gearboxes’. Technical Report, SKF, ATK, 2013.
    20. 20)
    21. 21)
      • 11. SKF Bearings: ‘Bearing failures and their causes’. Technical Report, Product information 401, 1994.
    22. 22)
    23. 23)
      • 25. SKF: ‘General catalogue’, 2003.
    24. 24)
      • 9. Evans, M.H.: ‘White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WEC)’, Mater. Sci. Technol., 2005, 28, (1), pp. 322.
    25. 25)
      • 26. International organization for standardization: ‘ISO 6336–3: Calculation of load capacity of spur and helical gears’, 2006.
    26. 26)
    27. 27)
    28. 28)
      • 1. Scott, K.S., Infield, D., Barltrop, N., Coultate, J., Shahaj, A.: ‘Effects of extreme and transient loads on wind turbine drive trains’. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.
    29. 29)
      • 7. Oyague, F.: ‘Gearbox modeling and load simulation of a baseline 750 kW wind turbine using state-of-the-art simulation codes’. Technical Report, NREL/TP-500-41160, National Renewable Energy Laboratory, 2009.
    30. 30)
      • 33. International organisation for standardization: ‘IEC 61400-4:2012: wind turbines – part 4: design requirements for wind turbine gearboxes’, 2012.
    31. 31)
    32. 32)
      • 27. NSK: ‘Bearing internal load distribution and displacement’. Chapter from Catalogue: Rolling Bearings, 2009.
    33. 33)
      • 21. Link, H., LaCava, W., van Dam, J., et al: ‘Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing’. Technical Report, NREL/TP-5000-51885, National Renewable Energy Laboratory, 2011.
    34. 34)
      • 28. Hertz, H.: ‘On the contact of elastic solids’, J. Reine Angew. Math., 1881, 92, pp. 156171.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0194
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading