Response of wind power park modules in distribution systems to transmission network faults during reverse power flows

Response of wind power park modules in distribution systems to transmission network faults during reverse power flows

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Penetration levels of distributed wind power park modules (WPPMs) reach such high levels in parts of the world, for example, Germany, that reverse power flows (RPFs) from distribution to transmission level occur regularly in certain areas of the power system. This study compares the impact of normal and RPFs on the network fault response of WPPMs in distribution systems that are prone to fault-induced delayed voltage recovery issues for a fault in the transmission system. The study contributes to the ongoing discussion on grid connection requirements for WPPMs and raises awareness of a prolonged low-voltage ride-through (LVRT) operation of WPPMs when these are set to ride-through faults in ‘blocking mode’, during which the set-points for the active and reactive currents are set to zero. For RPFs such LVRT operation causes a substantial sustained active power deficit in power system areas with high penetration of distributed WPPMs and potentially leads to a stability risk.


    1. 1)
      • 1. International Energy Agency (IEA): ‘World energy outlook 2014’ (OECD Publishing, Paris and France, 2014).
    2. 2)
      • 2. Frankfurt School of Finance & Management gGmbH.: ‘Global trends in renewable energy investment 2014’ (2014).
    3. 3)
      • 3. ENTSO-E: ‘Network code for requirements for grid connection applicable to all generators’ (European Network of Transmission System Operators, Brussels, 2013).
    4. 4)
      • 4. IEEE Std. 1547a-2014: ‘Standard for interconnecting distributed resources with electric power systems’, vol. 21, May 2014.
    5. 5)
      • 5. FERC 661: ‘Interconnection for wind energy’, June 2005.
    6. 6)
      • 6. FERC 661-A: ‘Interconnection for wind energy’, December 2005.
    7. 7)
      • 7. NERC PRC-024-1: ‘Generator frequency and voltage protective relay settings’, May 2013.
    8. 8)
      • 8. NERC FAC-001-2: ‘Facility connection requirements’, November 2014.
    9. 9)
      • 9. BDEW: ‘TransmissionCode 2007. network and system rules of the german transmission system operators’ (BDEW Bundesverband der Energie- und Wasserwirtschaft e. V., August 2007).
    10. 10)
      • 10. BDEW: ‘Technical guideline generating plants connected to the medium-voltage network. Guideline for generating plants’ connection to and parallel operation with the medium-voltage network’ (BDEW Bundesverband der Energie- und Wasserwirtschaft e. V., 2008).
    11. 11)
      • 11. German Government: ‘Ordinance for ancillary services of wind power plants (ancillary services ordinance – SDLWindV’, Fed. Law Gaz., 2009, I, (39), pp. 17341746.
    12. 12)
      • 12. REE: ‘Requisitos técnicos de las instalaciones eólicas, fotovoltaicas y todas aquellas instalaciones de producción cuya tecnología no emplee un generador síncrono conectado directamente a La Red: Separata del borrador de P.O.12.2’ (Red Eléctrica de España, 2008).
    13. 13)
      • 13. EirGrid plc: ‘EirGrid grid code’ (EirGrid plc, Dublin, 2011).
    14. 14)
    15. 15)
      • 15. Levi, V., Kay, M., Povey, I.: ‘Reverse power flow capability of tap-changers’. Proc. 18th Int. Conf. on Electricity Distribution, Turin, Italy, June 2005, pp. 15.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Sulla, F., Svensson, J., Samuelsson, O.: ‘Wind turbines voltage support in weak grids’. Proc. 2013 IEEE PES General Meeting, Vancouver, Canada, July 2013.
    20. 20)
      • 20. Diedrichs, V., Beekmann, A., Busker, K., et al: ‘Control of wind power plants utilizing voltage source converter in high impedance grids’. Proc. 2012 IEEE PES General Meeting, San Diego, USA, July 2012, pp. 19.
    21. 21)
    22. 22)
      • 22. NERC: ‘Emerging issue #RAS–8: Assessment of fault–induced delayed voltage recovery (FIDVR) simulations’ (North American Electric Reliability Corporation, June 2012).
    23. 23)
      • 23. DGS: ‘ Consolidated and plausibilised database of the EEG power plant registry in Germany’ (Deutsche Gesellschaft für Sonnenenergie (DGS) e.V., 2013). Available at, accessed April 2013.
    24. 24)
      • 24. German TSOs: ‘Network development plan electricity 2012: 2nd revised draft of the transmission system operators’ (50 Hertz Transmission, Amprion, TenneT TSO, TransnetBW, 2012).
    25. 25)
      • 25. DIgSILENT: ‘Induction machine and motor driven machine: manuals,’ (DIgSILENT GmbH, Berlin-Dortmund-Bayreuth-Stuttgart, 2012).
    26. 26)
      • 26. IEC 61400 27: ‘Wind turbines - Part 27-1: Electrical simulation models – Wind turbines’, CDV, November 2013.
    27. 27)
      • 27. Enercon: ‘Model documentation: ENERCON wind energy converter model ExF3v2 for DIgSILENT powerFactory’ (Enercon GmbH, March 2013).
    28. 28)
      • 28. VDE-AR-N 4105: ‘Generators in the low voltage distribution network. Application guide for generating plants’ connection to and parallel operation with the low-voltage network’ (Forum Netztechnik / Netzbetrieb (FNN) im VDE e.V., 2011).
    29. 29)
      • 29. ENTSO-E.: ‘Network code on load-frequency control and reserves’ (ENTSO-E, Brussels, June 2013).
    30. 30)

Related content

This is a required field
Please enter a valid email address