Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Energy storage against interconnection as a balancing mechanism for a 100% renewable UK electricity grid

Energy storage against interconnection as a balancing mechanism for a 100% renewable UK electricity grid

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers generation and demand challenges of a 100% renewable UK electricity grid and how this could be addressed with interconnection or energy storage. Hourly demand and electricity generation profiles for a year have been constructed: Business as Usual (BAU) with a yearly demand of 540 TWh and Green Plus (GP) with a demand of 390 TWh, Two further scenarios based on the above have been considered with electrification of heating (ASHP) and electric vehicle transportation (EV). The resultant hourly imbalances have been used to calculate the interconnection and energy storage requirements. This paper discusses the findings of the BAU scenario. The calculated interconnector capacity required was found to be 60 GW and cost £58 billion. Energy storage capacity requirements vary depending on the selected technology. Rated capacity was estimated to be 14 GW with storage capacity of 3 TWh for pumped storage, 11 GW and 2.3 TWh for liquid air, and 65 GW and 13.6 TWh for hydrogen storage, at a cost of £65, £76 and £45 billion respectively. This paper indicates that storing hydrogen in underground caverns would offer the cheapest solution. However, whilst these technological solutions can address generation and demand imbalance in a fully renewable electricity grid, there clearly remain barriers to each technology.

References

    1. 1)
      • 33. Hassett, B., Bower, E., Alexander, M.: ‘MERGE WP 3 task 3.2: evaluation of the impact that progressive deployment of EV will provoke on electricity demand, steady state operation, market issues, generation schedules and on the volume of carbon emissions’ (Ricardo, European Commission, 2011).
    2. 2)
      • 28. ELEXON: Generation by Fuel Type – Raw Data. 2013 [cited 2013 25.04.2013]. Available at https://www.elexonportal.co.uk/article/view/216?cachebust=fxwjq4nloz.
    3. 3)
      • 6. Trainer, T.: ‘Can Europe run on renewable energy? A negative case’, Energy Policy, 2013.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 77. MacKay, D.J.: ‘Sustainable energy – without the hot air’ (UIT Cambridge Ltd. 368, Cambridge, UK, 2009).
    8. 8)
      • 35. De Blecourt, M.J.: Load-shifting in a new perspective – smart scheduling of smart household appliances using an agent-based modelling approach’. Faculty of Technology, Policy and Management, 2012, Delf University of Technology, Delf. p. 106.
    9. 9)
      • 62. Ruberg, S., Ferreira, H., L'Abbate, A., et al: ‘D1.2.1 Improving network controllability by Flexible Alternating Current Transmission System (FACTS) and by High Voltage Direct Current (HVDC) transmission systems, 2010, Technical University Dortmund.
    10. 10)
      • 64. DECC: ‘Quarterly Energy Prices – December 2012, D.o.E.a.C. Change, Editor 2012, Crown Copyright: London.
    11. 11)
      • 30. NERC: ‘Hourly modelled tidal data for 2001 at location 58.7160 N, 3.1150 W, N.E.R.C. (NERC), Editor 2013: Liverpool, UK.
    12. 12)
    13. 13)
    14. 14)
      • 74. Arbon, I., Price, A., Evison, T., et al: ‘Round Table 1 – Liquid Air and the Electricity Grid’, 2013.
    15. 15)
    16. 16)
    17. 17)
      • 59. Hulle, F.V.: ‘Integrating wind – developing Europe's power market for the large-scale integration of wind power’, in TradeWind 2009, European Wind Energy Association.
    18. 18)
      • 20. Zervos, A., Lins, C., Muth, J.: ‘RE-thinking 2050 – a 100% renewable energy vision for the European Union’, (European Renewable Energy Council, Brussels, Belgium, 2010).
    19. 19)
      • 50. Drax: ‘About Drax's biomass plans’. 2013[cited 2013 November 2013]. Available at http://www.drax.com/biomass/cofiring_plans/.
    20. 20)
      • 54. Gross, R., Heptonstall, P., Leach, M., et al: ‘Renewables and the grid: understanding intermittency’. Proc. of the Institution of Civil Engineers – Energy, 2007, vol. 160, pp. 3141.
    21. 21)
    22. 22)
    23. 23)
      • 45. ONS. 2011 Census, Population and Household Estimates for England and Wales. 2012 [cited 2013 08.04.2013]. Available at http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-257414.
    24. 24)
      • 24. NationalGrid: 2012 Electricity Ten Year Statement (TYS). 2013 [cited 2013 February]. Available at http://www.nationalgrid.com/uk/Electricity/ten-year-statement/current-elec-tys/.
    25. 25)
      • 51. SKM: ‘Geothermal energy potential in Great Britain and Northern Ireland’ (Sinclair Knight Merz, London, 2012).
    26. 26)
      • 56. NationalGrid: ‘Interconnectors’. 2012[cited 2012 June]. Available at http://www.nationalgrid.com/uk/interconnectors/.
    27. 27)
      • 48. NOC: ‘Tidal energy from UK coastal waters’. 2013[cited 2013 July 2013]. Available at http://www.noc.ac.uk/news/tidal-energy-from-uk-coastal-waters.
    28. 28)
    29. 29)
      • 3. Milborrow, D., Gonzalez, S.: ‘The carbon trust & DTI renewables network impact study annex 4: intermittency literature survey & roadmap’ (Mott MacDonald, Brighton, UK, 2003).
    30. 30)
      • 79. Trompeteler, P.: ‘Discussion about LAES and Isle of Grain storage facility’, in Alexander, M., (Ed.) : Shoreham-By-Sea, UK, 2013.
    31. 31)
    32. 32)
    33. 33)
      • 46. DECC: ‘Weekly solar PV installation & capacity based on registration date’, 2014, Crown Copyright.
    34. 34)
    35. 35)
      • 34. DECC: ‘Digest of UK Energy Statistics (DUKES) – Chapter 5: Electricity’. 2012[cited 2013 January]. Available at http://www.webarchive.nationalarchives.gov.uk/20130109092117/http://decc.gov.uk/en/content/cms/statistics/energy_stats/source/electricity/electricity.aspx.
    36. 36)
      • 73. Strbac, G., Aunedi, M., Pudjianto, D., et al: ‘Strategic assessment of the role and value of energy storage systems in the UK low carbon energy future’ (Energy Futures Lab, Imperial College London, London, UK, 2012).
    37. 37)
      • 37. Gardner, P.: ‘UK generation and demand scenarios for 2030’ (Garrad Hassan & Partners Ltd, Glasgow, 2011).
    38. 38)
    39. 39)
      • 82. NationalGrid: ‘2011 National Electrical Transmission System (NETS) Seven Year Statement’. 2011[cited June 2012]. Available at http://www.nationalgrid.com/uk/Electricity/SYS/current/.
    40. 40)
      • 52. DECC and WAG: ‘England and wales hydropower resource assessment’ (Department of Energy and Climate Change and Welsh Assembly Government, 2010).
    41. 41)
      • 36. Frontier Economics and Sustainability First: ‘Demand side response in the domestic sector – a literature review of major trials’, D.o.E.a.C. Change, Editor 2012, Crown copyright: London, p.156.
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 47. TRNSYS: ‘TRNSYS Transient System Simulation Tool’. 2013[cited 2013 July 2013]. Available at http:www.trnsys.com/.
    47. 47)
      • 63. Chote, R., Nickell, S., Parker, G.: ‘Economic and fiscal outlook’, O.f.B. Responsibility, Editor 2012, Crown copyright.
    48. 48)
    49. 49)
      • 61. SKM: ‘Offshore grid development for a secure renewable future – a UK perspective’ (Sinclair Knight Merz: Newcastle upon Tyne, UK, 2010).
    50. 50)
      • 26. DECC: ‘Weather statistics – average wind speed and deviations from the long term mean (ET 7.2)’, 2012, Department of Energy and Climate Change.
    51. 51)
      • 60. Czisch, G., Giebel, G.: ‘Realisable scenarios for a future electricity supply based 100% on renewable energies’. Riso Int. Energy Conf., Riso, Denmark, 2007.
    52. 52)
      • 55. Saguan, M., Ahner, N., de Hauteclocque, A., Glachant, J.-M.: ‘The UK charging system on interconnectors’ (Florence School of Regulation, Florence, Italy, 2011).
    53. 53)
    54. 54)
      • 27. NationalGrid: ‘Metered half-hourly electricity demands’. 2013[cited 2013 January]. Available at http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/.
    55. 55)
      • 38. Arup: ‘Review of generation costs and deployment potential of renewable electricity technologies in the UK’ (Ove Arup & Partners Ltd., London, 2011).
    56. 56)
      • 43. DECC: Consultation on changes to financial support for solar PV, D.o.E.a.C. Change, Editor 2014, Crown Copyright: London.
    57. 57)
    58. 58)
    59. 59)
      • 32. Boardman, B., Darby, S., Killip, G., et al: ‘40% house’ (Environmental Change Institute, Oxford, 2005).
    60. 60)
      • 31. Elders, I., Ault, G., Galloway, S., et al: ‘Electricity network scenarios for Great Britain in 2050’ (Institute for Energy and Environment, Glasgow, 2006).
    61. 61)
    62. 62)
    63. 63)
      • 29. MetOffice: Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current). 2012 [cited 2013 03.06.2013].
    64. 64)
      • 75. Schoenung, S.: ‘Economic analysis of large-scale hydrogen storage for renewable utility applications’ (Sandia National Laboratories, Albuquerque, New Mexico, USA, 2011).
    65. 65)
      • 2. DECC: ‘Smarter Grids: The Opportunity’, D.o.E.a.C. Change, Editor 2009, Crown Copyright: London.
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
      • 40. Estate, T.C.: ‘UK offshore wind report’ (The Crown Estate, London, 2012).
    72. 72)
      • 53. Forrest, N., Abel, T., Baker, K., et al: ‘Scottish hydropower resource study’ (Nick Forrest Associates, SISTech and Black & Veatch, 2008).
    73. 73)
      • 44. GRO: ‘Estimates of Households and Dwellings in Scotland’. 2013[cited 2013 08.04.2013]; Available at http://www.gro-scotland.gov.uk/statistics/theme/households/estimates/index.html.
    74. 74)
      • 1. EC: ‘Roadmap 2050 – Sectoral perspective’. 2011 08 March 2011[cited 2012 September]. Available at http://www.ec.europa.eu/clima/policies/roadmap/perspective/index_en.htm.
    75. 75)
      • 39. Ernst & Young: ‘Cost of and financial support for wave, tidal stream and tidal range generation in the UK’ (Ernst & Young LLP and Black & Veatch, 2010).
    76. 76)
      • 78. NationalGrid: ‘National Grid LNG – UK leaders in LNG importation’ (National Grid, Kent, 2009).
    77. 77)
    78. 78)
      • 76. DOE: ‘DOE global energy storage database’ (Sandia Corporation, 2012).
    79. 79)
      • 42. DCLG: Planning practice guidance for renewable and low carbon energy, D.f.C.a.L. Government, Editor 2013, Crown copyright: London.
    80. 80)
    81. 81)
      • 25. MetOffice: ‘Average December finishes a warm 2011’. 2011[cited June 2012]. Available at http://www.metoffice.gov.uk/news/releases/archive/2011/december-and-annual-statistics.
    82. 82)
      • 41. 4COffshore: ‘Offshore Wind Farms Database’. 2013[cited 2013 June 2013]. Available at http://www.4coffshore.com/windfarms/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0042
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address