access icon free Control of doubly-fed induction generator for wind energy in network context

This study investigates a novel control methodology for the doubly-fed induction generators (DFIGs) in the real situation of wind energy generation when the machine is connected to a power system. The machine speed, DC voltage, active and reactive grid powers have been controlled using a reduced-order representation of the DFIG coupled to the grid. This framework allows several methods for the synthesis of the regulator. A state-feedback controller is designed based on the linear quadratic method. This regulator is tested in comparison with the standard vector control approach and the more recent flux magnitude angle control via simulations performed with Simulink and SimPowerSystem Toolbox of MATLAB.

Inspec keywords: linear quadratic control; power grids; asynchronous generators; machine vector control; wind power plants; reactive power control; feedback

Other keywords: machine speed; active grid power control; SimPowerSystem Toolbox; state-feedback controller; doubly-fed induction generator control; standard vector control approach; wind energy generation system; flux magnitude angle control; DC voltage; linear quadratic method; reactive grid power control; DFIG; reduced-order representation

Subjects: Control of electric power systems; Optimal control; Asynchronous machines; Wind power plants; Power and energy control; Power system control

References

    1. 1)
      • 10. Altin, M., Göksu, Ö., Teodorescu, R., Rodriguez, P., Jensen, B.-B., Helle, L.: ‘Overview of recent grid codes for wind power integration’. Proc. 12th Int. Conf. Optimization of Electrical and Electronic Equipment, OPTIM, 2010, pp. 11521160.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 11. Bolik, S.: ‘Grid connection of wind turbine, a never ending story’. Proc. EWEC, 2006.
    12. 12)
      • 21. Røtøen, H.Ø., Undeland, T.M., Gjengedal, T.: ‘Doubly fed induction generator in a wind turbine’ (IEEE Power Tech, Budapest, Hungary, 1999).
    13. 13)
      • 1. Arbi, J., Slama-Belkhodja, I.: ‘Comparative study of grid side converter controls of a variable speed wind turbine with grid voltage faults’. Conf. Power Electrical Systems, SSD'07, Hammamet, Tunisia, 19–22 March 2007.
    14. 14)
      • 9. Petersson, L., Harnefors, , Thiringer, T.: ‘Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators’. Proc. 35th Annual IEEE Power Electronics Specialists Conference – PESC'04, 20–25 June 2004, vol. 1, pp. 482486.
    15. 15)
      • 6. Yao, J., Li, H., Chen, Z., et al: ‘Enhanced control of a DFIG-based wind-power generation system with series grid-side converter under unbalanced grid voltage conditions’, IEEE Trans. Power Electron., 2012, 28, pp. 31673181 (doi: 10.1109/TPEL.2012.2219884).
    16. 16)
      • 7. Bejaoui, M., Slama-Belkhodja, I., Monmasson, E., Marinescu, B., Charaabi, L.: ‘FPGA design of a robust phase locked loop algorithm for a three phase PWM grid connected converter’. Power Electronics and Applications, EPE'09, 2009, Barcelona Spain, pp. 110.
    17. 17)
      • 5. Xu, L., Wang, Y.: ‘Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions’, IEEE Trans. Power Syst., 2007, 22, pp. 314323 (doi: 10.1109/TPWRS.2006.889113).
    18. 18)
      • 14. Hughes, F.M., Anaya-Lara, O., Jenkins, N., Strbac, G.: ‘Control of DFIG-based wind generation for power network support’, IEEE Trans. Power Syst., 2005, 20, pp. 19581966 (doi: 10.1109/TPWRS.2005.857275).
    19. 19)
      • 20. Ledesma, P., Usaala, J.: ‘Minimum voltage protections in variable speed wind farms’. PowerTech Conference, Porto, Portugal, September 2001, vol. 4.
    20. 20)
      • 8. Bejaoui, M., Marinescu, B., Slama-Belkodja, I., Monmasson, E.: ‘Control of DFIG for wind energy in a network context: a new formulation and interpretation of the control specifications’. Proc. IEEE PES Innovative Smart Grid Technology, Manchester-UK, 5–7 December 2011, pp. 17.
    21. 21)
      • 16. Leithead, W.E., Connor, B.: ‘Control of variable speed wind turbines: design task’, Int. J. Control, 2000, 73, (13), pp. 11891212 (doi: 10.1080/002071700417849).
    22. 22)
      • 15. Ekhanayake, J.B., Holdsworth, L., Wu, X., Jenkins, N.: ‘Dynamic modelling of doubly fed induction generator wind turbines’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 803809 (doi: 10.1109/TPWRS.2003.811178).
    23. 23)
      • 19. Kwakernaak, H., Sivan, R.: ‘Linear optimal control systems’ (Wiley, New-York, 1972).
    24. 24)
      • 12. Mohseni, M., Islam, S.M.: ‘Transient control of DFIG-based wind power plants in compliance with the Australian grid code’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 28132824 (doi: 10.1109/TPEL.2011.2174380).
    25. 25)
      • 13. Lima, F.K.A., Luna, A., Rodriguez, P., Watanabe, E.H., Blaabjerg, F.: ‘Rotor voltage dynamics in the doubly fed induction generator during grid faults’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 118130 (doi: 10.1109/TPEL.2009.2025651).
    26. 26)
      • 22. SimPowerSystem Toolbox of Matlab, www.mathworks.com.
    27. 27)
      • 2. Campos-Gaona, D., Moreno-Goytia, E., Anaya-Lara, O.: ‘Fault ride-through improvement of DFIG-WT by integrating a two-degrees-of-freedom internal model control’, IEEE Trans. Ind. Electron., 2012, 60, (3), pp. 114.
    28. 28)
      • 17. Davison, E.J., Smith, H.M.: ‘Pole assignment in linear time-invariant multivariable systems with constant disturbances’, Automatica, 1971, 7, pp. 489498 (doi: 10.1016/0005-1098(71)90099-9).
    29. 29)
      • 10. Altin, M., Göksu, Ö., Teodorescu, R., Rodriguez, P., Jensen, B.-B., Helle, L.: ‘Overview of recent grid codes for wind power integration’. Proc. 12th Int. Conf. Optimization of Electrical and Electronic Equipment, OPTIM, 2010, pp. 11521160.
    30. 30)
      • 3. Marques, G.D., Sousa, D.M.: ‘Understanding the doubly fed induction generator during voltage dips’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 421431 (doi: 10.1109/TEC.2012.2189214).
    31. 31)
      • 4. Trinath, K., Kumar, C.N.K., Veera Kotlu, L.: ‘Unbalanced loaded DFIG with grid fault’. Advances in Int. Conf. Engineering, Science and Management (ICAESM), 30, 31 March 2012, pp. 1115.
    32. 32)
      • 18. Stephen, B., Laurent, G., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’. Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), 1994, vol. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2013.0043
Loading

Related content

content/journals/10.1049/iet-rpg.2013.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading