access icon free Shaft speed ripples in wind turbines caused by tower shadow and wind shear

Wind turbines are an important source of renewable energy. Although the amount of wind turbine installations has known a considerable increase in recent years, technological improvements are still needed to increase their efficiency. An important subject is the presence of vibrations. For instance, ripples can be present in the torque and shaft speed, which can be caused by turbulence of the air flow, resonance or mechanical problems. Furthermore, tower shadow and wind shear are able to cause significant torque oscillations. In literature, a mathematical model of the torque oscillations has been presented for three-bladed horizontal-axis upwind turbines. However, it remains unclear what the impact is of these torque oscillations on the shaft speed. When ripples are present in the shaft speed, they affect the back-electromotive force and electrical power of the generator and could propagate further in the system. Therefore this study investigates whether this effect is large enough to have a considerable impact on the system. The turbine inertia and size are both relevant parameters in this research. However, it will be shown by mathematical proof that the relative amount of shaft speed ripples caused by tower shadow and wind shear is independent of the turbine size.

Inspec keywords: wind turbines; shafts; mathematical analysis; torque; vibrations; turbulence

Other keywords: technological improvements; electrical power; wind shear; mathematical proof; air flow; three-bladed horizontal-axis upwind turbines; shaft speed ripples; back-electromagnetic force; turbine inertia; shaft speed; mechanical problems; renewable energy source; tower shadow; torque oscillations; vibrations; wind turbine installations; turbulence

Subjects: Wind power plants; Mathematical analysis

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 5. Roy, S.: ‘Impact of short duration wind variations on output of a pitch angle controlled turbine’, IEEE Trans. Sust. Energy, 2012, 3, pp. 566575 (doi: 10.1109/TSTE.2012.2193908).
    22. 22)
      • 11. Xia, Y.Y., Fletcher, J.E., Finney, S.J., Ahmed, K.H., Williams, B.W.: ‘Torque ripple analysis and reduction for wind energy conversion systems using uncontrolled rectifier and boost converter’, IET Renew. Power Gener., 2011, 5, pp. 377386 (doi: 10.1049/iet-rpg.2010.0108).
    23. 23)
      • 7. Muhando, E.B., Senjyu, T., Yona, A., Kinjo, H., Funabashi, T.: ‘Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation’, IET Control Theory Appl., 2007, 1, pp. 14311440 (doi: 10.1049/iet-cta:20060448).
    24. 24)
      • 19. Sopanen, J., Ruuskanen, V., Nerg, J., Pyrhonen, J.: ‘Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent magnet generator’, IEEE Trans. Ind. Electron., 2011, 58, pp. 38593867 (doi: 10.1109/TIE.2010.2087301).
    25. 25)
      • 16. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875 (doi: 10.1109/TPEL.2009.2017082).
    26. 26)
      • 13. Lee, D.-H., Lee, J.H., Ahn, J.-W.: ‘Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast fourier transform analysis’, IET Electr. Power Appl., 2012, 6, pp. 455461 (doi: 10.1049/iet-epa.2011.0322).
    27. 27)
      • 4. Zhang, Z., Verma, A., Kusiak, A.: ‘Fault analysis and condition monitoring of the wind turbine gearbox’, IEEE Trans. Energy Convers., 2012, 27, pp. 526535 (doi: 10.1109/TEC.2012.2189887).
    28. 28)
      • 8. Dolan, D.S.L., Lehn, P.W.: ‘Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow’, IEEE Trans. Energy Convers., 2006, 21, pp. 717724 (doi: 10.1109/TEC.2006.874211).
    29. 29)
      • 2. Stannard, N., Bumby, J.R.: ‘Performance aspects of mains connected small-scale wind turbines’, IET Gener., Transm. Distrib., 2007, 1, pp. 348356 (doi: 10.1049/iet-gtd:20060167).
    30. 30)
      • 15. Huang, H., Mao, C., Lu, J., Wang, D.: ‘Small-signal modelling and analysis of wind turbine with direct drive permanent magnet synchronous generator connected to power grid’, IET Renew. Power Gener., 2012, 6, pp. 4858 (doi: 10.1049/iet-rpg.2010.0217).
    31. 31)
      • 20. Thiringer, T., Dahlberg, J.-A.: ‘Periodic pulsations from a three-bladed wind turbine’, IEEE Trans. Energy Convers., 2001, 16, pp. 128133 (doi: 10.1109/60.921463).
    32. 32)
      • 12. Ebrahimi, B.M., Faiz, J.: ‘Magnetic field and vibration monitoring in permanent magnet synchronous motors under eccentricity fault’, IET Electr. Power Appl., 2012, 6, pp. 3545 (doi: 10.1049/iet-epa.2010.0159).
    33. 33)
      • 17. Uehara, A., Pratap, A., Goya, T., et al: ‘A coordinated control method to smooth wind power fluctuations of a pmsg-based wecs’, IEEE Trans. Energy Convers., 2011, 26, pp. 550558 (doi: 10.1109/TEC.2011.2107912).
    34. 34)
      • 18. Morren, J., Pierik, J., de Haan, S.W.H.: ‘Inertial response of variable speed wind turbines’, Electr. Power Syst. Res., 2006, 76, pp. 980987 (doi: 10.1016/j.epsr.2005.12.002).
    35. 35)
      • 9. Fadaeinedjad, R., Moschopoulos, G., Moallem, M.: ‘The impact of tower shadow, yaw error, and wind shears on power quality in a wind-diesel system’, IEEE Trans. Energy Convers., 2009, 24, pp. 102111 (doi: 10.1109/TEC.2008.2008941).
    36. 36)
      • 10. Hughes, F.M., Anaya-Lara, O., Ramtharan, G., Jenkins, N., Strbac, G.: ‘Influence of tower shadow and wind turbulence on the performance of power system stabilizers for DFIG-based wind farms’, IEEE Trans. Energy Convers., 2008, 23, pp. 519528 (doi: 10.1109/TEC.2008.918586).
    37. 37)
      • 3. Bumby, J.R., Martin, R.: ‘Axial-flux permanent-magnet air-cored generator for small-scale wind turbines’, IEE Proc., Electr. Power Appl., 2005, 152, pp. 10651075 (doi: 10.1049/ip-epa:20050094).
    38. 38)
      • 1. Acosta, J.L., Combe, K., Djokic, S.Z., Hernano-Gil, I.: ‘Performance assessment of micro and small-scale wind turbines in urban areas’, IEEE Syst. J., 2012, 6, pp. 152163 (doi: 10.1109/JSYST.2011.2163025).
    39. 39)
      • 6. Leithead, W.E.: ‘Dependence of performance of variable speed wind turbines on the turbulence, dynamics and control’, IEE Proc. C, Gener., Transm. Distrib., 1990, 137, pp. 403413 (doi: 10.1049/ip-c.1990.0055).
    40. 40)
      • 14. Semken, R.S., Polikarpova, M., Röyttä, P., et al: ‘Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors’, IET Renew. Power Gener., 2012, 6, pp. 18 (doi: 10.1049/iet-rpg.2010.0191).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2013.0008
Loading

Related content

content/journals/10.1049/iet-rpg.2013.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading