Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Determination of characteristic parameters of battery energy storage system for wind farm

Integrating a battery energy storage system (BESS) with a wind farm can smooth power fluctuations from the wind farm. Battery storage capacity (C), maximum charge/discharge power of battery (P) and smoothing time constant (T) for the control system are three most important parameters that influence the level of smoothing (LOS) of output power transmitted to the grid. The economic cost (EC) of a BESS should also be taken into consideration when determining the characteristic parameters of BESS (C, P). In this study, an artificial neural network-based long-term model of evaluated BESS technical performance and EC is established to reflect the relationship between the three parameters (C, P, T) and LOS of output power transmitted to the grid, the EC of BESS. After that, genetic algorithm is used to find optimal parameter combination of C, P and T by optimising the objective function derived from the mathematical model constructed. The simulation results of the example indicate that the parameter combination of C, P and T obtained by the proposed method can better not only meet the technical demand but also achieve maximum economic profit.

References

    1. 1)
      • 18. Miu, K.N., Chiang, H.-D., Darling, G.: ‘Capacitor placement, replacement and control in large-scale distribution system by a GA-based two-stage algorithm’, IEEE Trans. Power Syst., 1997, 12, (3), pp. 11601166 (doi: 10.1109/59.630457).
    2. 2)
      • 17. Li, Q., Choi, S.S., Yuan, Y., Yao, D.L.: ‘On the determination of battery energy storage capacity and short-term power dispatch of a wind farm’, IEEE Trans. Sust. Energy, 2011, 2, (2), pp. 148158 (doi: 10.1109/TSTE.2010.2095434).
    3. 3)
      • 19. Enacheanu, B., Raison, B., Caire, R., et al: ‘Radial network reconfiguration using genetic algorithm based on the matroid theory’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 186195 (doi: 10.1109/TPWRS.2007.913303).
    4. 4)
      • 1. Kim, E.-H., Kim, J.-H., Kim, S.-H., et al: ‘Impact analysis of wind farms in the Jeju Island power system’, IEEE Syst. J., 2012, 6, (1), pp. 134139 (doi: 10.1109/JSYST.2011.2163017).
    5. 5)
      • 3. Smith, J.C., Milligan, E.M.R., DeMeo, A.: ‘Utility wind integration and operating impact state of the art’, IEEE Trans. Power Syst., 2007, 32, pp. 900907 (doi: 10.1109/TPWRS.2007.901598).
    6. 6)
      • 7. Teleke, S., Baran, M.E., Bhattacharya, S., Huang, A.Q., et al: ‘Control strategies for battery energy storage for wind farm dispatching’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 725732 (doi: 10.1109/TEC.2009.2016000).
    7. 7)
      • 16. Wang, X.Y., Mahinda Vilathgamuwa, D., Choi, S.S.: ‘Determination of battery storage capacity in energy buffer for wind farm’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 868878 (doi: 10.1109/TEC.2008.921556).
    8. 8)
      • 20. Rudolf, A., Bayrleithner, R.: ‘A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 14601468 (doi: 10.1109/59.801929).
    9. 9)
      • 4. Banakar, H., Luo, C., Ooi, B.T.: ‘Impacts of wind power minute-to-minute variations on power system operation’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 150160 (doi: 10.1109/TPWRS.2007.913298).
    10. 10)
      • 12. Zhang, C.W., Zhang, X.: ‘PWM Rectifier and Control’, (China Machine Press, Beijing, 2012) (in Chinese).
    11. 11)
      • 1. Kim, E.-H., Kim, J.-H., Kim, S.-H., et al: ‘Impact analysis of wind farms in the Jeju Island power system’, IEEE Syst. J., 2012, 6, (1), pp. 134139.
    12. 12)
      • 3. Smith, J.C., Milligan, E.M.R., DeMeo, A.: ‘Utility wind integration and operating impact state of the art’, IEEE Trans. Power Syst., 2007, 32, pp. 900907.
    13. 13)
      • 10. Shuili, Y., Dong, H., Jianlin, L., et al: ‘Selection of the optimal battery capacity for wind farm’, Electr. Power Constr., 2010, 31, (9), pp. 14(in Chinese).
    14. 14)
      • 9. Shiji, W., Ryohei, O.: ‘An investigation on optimal battery capacity in wind power generation system’. Proc. of JSES/JWEA Joint Conf., 2004, pp. 341344.
    15. 15)
      • 19. Enacheanu, B., Raison, B., Caire, R., et al: ‘Radial network reconfiguration using genetic algorithm based on the matroid theory’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 186195.
    16. 16)
      • 13. State Grid Corporation of China: ‘Q/GDW392—2009 Technical rule for connecting wind farm into power grid’ (China Electric Power Press, Beijing, 2010).
    17. 17)
      • 17. Li, Q., Choi, S.S., Yuan, Y., Yao, D.L.: ‘On the determination of battery energy storage capacity and short-term power dispatch of a wind farm’, IEEE Trans. Sust. Energy, 2011, 2, (2), pp. 148158.
    18. 18)
      • 2. Suvire, G.O., Mercado, P.E.: ‘Wind farm: dynamic model and impact on a weak power system’. IEEE PES T&D LATINAMERICA, Bogota′, Colombia, 2008, pp. 18.
    19. 19)
      • 11. Yao, C.: ‘Research on full-scale grid-connected power conversion technology for direct-driven wind generation system’. Doctoral Dissertation, Beijing Jiaotong University, 2008, pp. 7779(in Chinese).
    20. 20)
      • 14. FeiSi Science And Technology Research Center: ‘Neural network theory and realization in MATLAB7’ (Electronic Industry Press, Beijing, 2005), pp. 99108(in Chinese).
    21. 21)
      • 6. Liang, L., Jianlin, L., Dong, H.: ‘An optimal energy storage capacity calculation method for 100 MW wind farm’. 2010 Int. Conf. Power System Technology, Hangzhou, China, 2010, pp. 14.
    22. 22)
      • 7. Teleke, S., Baran, M.E., Bhattacharya, S., Huang, A.Q., et al: ‘Control strategies for battery energy storage for wind farm dispatching’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 725732.
    23. 23)
      • 4. Banakar, H., Luo, C., Ooi, B.T.: ‘Impacts of wind power minute-to-minute variations on power system operation’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 150160.
    24. 24)
      • 16. Wang, X.Y., Mahinda Vilathgamuwa, D., Choi, S.S.: ‘Determination of battery storage capacity in energy buffer for wind farm’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 868878.
    25. 25)
      • 8. Jukka, V.P., Peter, D.L.: ‘Effect of energy storage on variations in wind power’, Wind Energy, 2005, 28, (4), pp. 424441.
    26. 26)
      • 15. Shuang, C.: ‘Theory and application of neutral network based on MATLAB toolbox’ (Chinese Science and Technologies University Press, Hefei, 1998), pp. 4573(in Chinese).
    27. 27)
      • 20. Rudolf, A., Bayrleithner, R.: ‘A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 14601468.
    28. 28)
      • 5. Yoshimoto, K., Nanahara, T., Koshimizu, G., et al: ‘New control method for regulating state-of-charge of a battery in hybrid wind power/battery storage system’. Power Systems Conf. and Exposition, PSCE2006, pp. 12441251.
    29. 29)
      • 18. Miu, K.N., Chiang, H.-D., Darling, G.: ‘Capacitor placement, replacement and control in large-scale distribution system by a GA-based two-stage algorithm’, IEEE Trans. Power Syst., 1997, 12, (3), pp. 11601166.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0385
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0385
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address