access icon free Design of backstepping power control for grid-side converter of voltage source converter-based high-voltage dc wind power generation system

This study presents a backstepping power control (BPC) design for the grid-side voltage source converter (GSVSC) in a voltage source converter-based high-voltage dc (VSC-HVDC) wind power generation system. First, a dynamic model by taking parameter variations and external disturbances into account is derived on the basis of the space-vector theory to achieve the decoupling control characteristic of the GSVSC in the VSC-HVDC. Moreover, based on the backstepping design procedure, a BPC scheme is developed in the sense of Lyapunov stability theorem for the GSVSC to satisfy multiple objectives of a stable HVDC bus and the grid connection with a unity power factor. The salient feature of the proposed BPC is the introduction of additional error terms into the control laws to reduce the chattering phenomena in traditional backstepping control. In addition, the effectiveness of the proposed BPC scheme is demonstrated by numerical simulations on a doubly-fed induction generator wind farm with VSC-HVDC grid connection, and its advantage is indicated in comparison with a traditional proportional-integral control strategy under a wide range of operating conditions and the possible occurrence of uncertainties.

Inspec keywords: power control; power generation control; HVDC power convertors; wind power plants; power convertors; HVDC power transmission; power factor; asynchronous generators; power system stability; numerical analysis; Lyapunov methods

Other keywords: unity power factor; decoupling control characteristic; GSVSC; external disturbances; backstepping power control design; space-vector theory; numerical simulations; doubly-fed induction generator wind farm; control laws; Lyapunov stability theorem; BPC design; VSC-HVDC grid connection; chattering phenomena reduction; voltage source converter-based high-voltage dc wind power generation system; grid-side voltage source converter; proportional-integral control strategy; VSC-HVDC wind power generation system

Subjects: Wind power plants; d.c. transmission; Asynchronous machines; Control of electric power systems; Power convertors and power supplies to apparatus; Other numerical methods; Power system control; Other numerical methods

References

    1. 1)
      • 19. Pena, R., Clare, J.C., Asher, G.M.: ‘Double fed induction generator using back-to-back PWM converter and its application to variable speed wind-energy generation’, IEE Proc. Electr. Power Appl., 1996, 143, (3), pp. 231241.
    2. 2)
      • 2. Cole, S., Belman, R.: ‘Transmission of bulk power’, IEEE Ind. Electron. Mag., 2009, 3, (3), pp. 1924.
    3. 3)
      • 9. Ramtharan, G., Arulampalam, A., Ekanayake, J.B., Hughes, F.M., Jenkins, N.: ‘Fault ride through of fully rated converter wind turbines with AC and DC transmission systems’, IET Renew. Power Gener., 2009, 3, (4), pp. 426438.
    4. 4)
      • 21. Du, C., Bollen, M., Agneholm, E., Sannino, A.: ‘A new control strategy of a VSC HVDC system for high-quality supply of industrial plants’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 23862394.
    5. 5)
      • 5. Zhou, H., Yang, G., Wang, J., Geng, H.: ‘Control of a hybrid high-voltage DC connection for large doubly fed induction generator-based wind farms’, IET Renew. Power Gener., 2011, 5, (1), pp. 3647.
    6. 6)
      • 11. Guo, C.Y., Zhao, C.Y.: ‘Supply of an entirely passive AC network through a double-infeed HVDC system’, IEEE Trans. Power Electron., 2010, 25, (11), pp. 28352841.
    7. 7)
      • 7. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
    8. 8)
      • 10. Feltes, C., Wrede, H., Koch, F.W., Erlich, I.: ‘Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 15371546.
    9. 9)
      • 23. Astrom, K.J., Wittenmark, B.: ‘Adaptive control’ (Addison-Wesley, New York, 1995).
    10. 10)
      • 8. Ramadan, H.S., Siguerdidjane, H., Petit, M., Kaczmarek, R.: ‘Performance enhancement and robustness assessment of VSC-HVDC transmission systems controllers under uncertainties’, Electr. Power Energy Syst., 2012, 35, (1), pp. 3446.
    11. 11)
      • 3. Chen, Z., Blaabjerg, F.: ‘Wind farm-A power source in future power systems’, Renew. Sustain. Energy Rev., 2009, 13, (6), pp. 12881300.
    12. 12)
      • 22. Feltes, C., Erlich, I.: ‘Variable frequency operation of DFIG based wind farms connected to the grid through VSC-HVDC link’. Proc. IEEE Power Eng. Soc. General Meeting, Tampa, 2007, pp. 17.
    13. 13)
      • 25. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    14. 14)
      • 15. Ruan, S.Y., Li, G.J., Jiao, X.H., Sun, Y.Z., Lie, T.T.: ‘Adaptive control design for VSC-HVDC systems based on backstepping method’, Electr. Power Syst. Res., 2007, 77, (6), pp. 559565.
    15. 15)
      • 6. Xu, L., Yao, L., Sasse, C.: ‘Grid integration of large DFIG-based wind farms using VSC transmission’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 976984.
    16. 16)
      • 12. Durrant, M., Werner, H., Abbott, K.: ‘Synthesis of multi-objective controllers for a VSC HVDC terminal using LMIs’. Proc. 43rd IEEE Conf. on Decision and Control, 2004, pp. 44734478.
    17. 17)
      • 24. Kay, S.M.: ‘Fundamentals of statistical signal processing’ (Prentice-Hall, New Jersey, 1993).
    18. 18)
      • 14. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: ‘Nonlinear and adaptive control design’ (John Wiley and Sons, New York, 1995).
    19. 19)
      • 18. Muller, S., Deicke, M., De Doncker, R.W.: ‘Doubly fed induction generator systems for wind turbines’, IEEE Ind. Appl. Mag., 2002, 8, (3), pp. 2633.
    20. 20)
      • 13. Wai, R.J., Chuang, K.L.: ‘Design of backstepping particle-swarm-optimization control for maglev transportation system’, IET Control Theory Appl., 2010, 4, (4), pp. 625645.
    21. 21)
      • 20. Martỉnez de Alegrỉa, I., Martỉn, J.L., Kortabarria, I., Andreu, J., Ereño, P.I.: ‘Transmission alternatives for offshore electrical power’, Renew. Sustain. Energy Rev., 2009, 13, (5), pp. 10271038.
    22. 22)
      • 17. Kim, K.S., Kim, Y.: ‘Robust backstepping control for slew maneuver using nonlinear tracking function’, IEEE Trans. Control Syst. Technol., 2003, 11, (6), pp. 822829.
    23. 23)
      • 1. Fairley, P.: ‘Steady as she blows’, IEEE Spectr., 2003, 40, (8), pp. 3539.
    24. 24)
      • 4. Xiang, D., Ran, L., Bumby, J.R., Tavner, P., Yang, S.: ‘Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 463471.
    25. 25)
      • 16. Karimi, A., Feliachi, A.: ‘Decentralized adaptive backstepping control of electric power system’, Electr. Power Syst. Res., 2008, 78, (3), pp. 484493.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0358
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading