Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and implementation of a new portable thermoelectric generator for low geothermal temperatures

In this study, the design and implementation of a new portable thermoelectric generator of 100 W for low geothermal temperatures has been carried out. For this system, a new SCADA-based testing and measuring system equipped with special software has been developed and employed for the first time. Thus, effects of the hot–cold water flow rates, the temperature differences between the surfaces and the load resistance affecting output power and efficiency of the thermoelectric generator have been investigated by a single testing and measuring system device. In the established SCADA-based testing and measuring system, the hot–cold water flows passed throughout the surfaces of the thermoelectric generator were increased by up to 3.7 and 12.8 l/min, respectively. Then, the temperature difference between the surfaces of the thermoelectric generator was measured as 67°C. When the load resistance of the thermoelectric generator was about 15 Ω, the maximum power of the thermoelectric generator was obtained as 41.6 W and the conversion efficiency was calculated as 3.9%. Also, the SCADA-based testing and measuring system will open up a new stage in examination of various thermoelectric generators.

References

    1. 1)
      • 2. Kim, R.Y., Lai, J.S., York, B., Koran, A.: ‘Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system’, IEEE Trans. Instrum. Meas., 2009, 56, (9), pp. 37093716.
    2. 2)
      • 9. Leonov, V., Torfs, T., Fiorini, P., Van Hoof, C.: ‘Thermoelectric converters of human warmth for self-powered wireless sensor nodes’, IEEE Sens. J., 2007, 7, (5), pp. 650657 (doi: 10.1109/JSEN.2007.894917).
    3. 3)
      • 8. Niu, X., Yu, J., Wang, S.: ‘Experimental study on low-temperature waste heat thermoelectric generator’, J. Power Sources, 2009, 188, (2), pp. 621626 (doi: 10.1016/j.jpowsour.2008.12.067).
    4. 4)
      • 23. Ahiska, R., Mamur, H.: ‘A test system and supervisory control and data acquisition application with programmable logic controller for thermoelectric generators’, Energy Convers. Manage., 2012, 64, (12), pp. 1522 (doi: 10.1016/j.enconman.2012.05.010).
    5. 5)
      • 1. Ahiska, R., Mamur, H., Ulis, M.: ‘Modelling and experimental study of thermoelectric module as generator’, J. Fac. Eng. Archit. Gaz., 2011, 26, (4), pp. 889896.
    6. 6)
      • 11. Leonov, V., Vullers, R.J.M.: ‘Wearable electronics self-powered by using human body heat: the state of the art and the perspective’, J. Renew. Sustain. Energy, 2009, 1, (6), pp. 27012714 (doi: 10.1063/1.3255465).
    7. 7)
      • 14. Hasebe, M., Kamikawa, Y., Meiarashi, S.: ‘Thermoelectric generators using solar thermal energy in heated road pavement’. Int. Conf. Thermoelectrics, Vienna, Austria, August 2006, pp. 697700.
    8. 8)
      • 15. Rinalde, G.F., Juanicó, L.E., Taglialavore, E., Gortari, S., Molina, M.G.: ‘Development of thermoelectric generators for electrification of isolated rural homes’, Int. J. Hydrog. Energy, 2010, 35, (11), pp. 58185822 (doi: 10.1016/j.ijhydene.2010.02.093).
    9. 9)
      • 12. Dalola, S., Ferrari, V., Guizzetti, M., et al: ‘Autonomous sensor system with power harvesting for telemetric temperature measurements of pipes’, IEEE Trans. Instrum. Meas., 2009, 58, (5), pp. 14711478 (doi: 10.1109/TIM.2009.2012946).
    10. 10)
      • 5. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2010, 4, (4), pp. 317328 (doi: 10.1049/iet-rpg.2009.0006).
    11. 11)
      • 17. Zorbas, K.T., Hatzikraniotis, E., Paraskevopoulos, K.M.: ‘Power and efficiency calculation in commercial TEG and application in wasted heat recovery in automobile’. European Conf. Thermoelectrics, Odessa, Ukraine, September 2007, pp. 221225.
    12. 12)
      • 22. Lertsatitthanakorn, C.: ‘Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator’, Bioresource Technol., 2007, 98, (8), pp. 16701674 (doi: 10.1016/j.biortech.2006.05.048).
    13. 13)
      • 18. Thacher, E.F., Helenbrook, B.T., Karri, M.A., Richter, C.J.: ‘Testing of an automobile exhaust thermoelectric generator in a light truck’, J. Autom. Eng., 2007, 221, (1), pp. 95107 (doi: 10.1243/09544070JAUTO51).
    14. 14)
      • 16. Kusnierkiewicz, D.Y., Fountain, G., Guo, Y., Hersman, C.B.: ‘The new horizons mission to the Pluto system and the Kuiper belt’. IEEE Aerospace Conf., Big Sky, MT, March 2008, pp. 110.
    15. 15)
      • 20. Champier, D., Bédécarrats, J.P., Kousksou, T., Rivaletto, M., Strub, F., Pignolet, P.: ‘Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove’, Energy, 2011, 36, (3), pp. 15181526 (doi: 10.1016/j.energy.2011.01.012).
    16. 16)
      • 7. Ortiz-Rivera, E.I., Salazar-Llinas, A., Gonzalez-Llorente, J.: ‘A mathematical model for online electrical characterization of thermoelectric generators using the P–I curves at different temperatures’. Applied Power Electronics Conf. and Exposition, Palm Springs, CA, September 2010, pp. 22262230.
    17. 17)
      • 13. Karri, M.A., Thacher, E.F., Helenbrook, B.T.: ‘Exhaust energy conversion by thermoelectric generator: two case studies’, Energy Convers. Manage., 2011, 52, (3), pp. 15961611 (doi: 10.1016/j.enconman.2010.10.013).
    18. 18)
      • 10. Xi, H., Luo, L., Fraisse, G.: ‘Development and applications of solar-based thermoelectric technologies’, Renew. Sustain. Energy Rev., 2007, 11, (5), pp. 923936 (doi: 10.1016/j.rser.2005.06.008).
    19. 19)
      • 6. Andrejasic, T., Jankovec, M., Topic, M.: ‘Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure’, IET Renew. Power Gener., 2011, 5, (4), pp. 281286 (doi: 10.1049/iet-rpg.2010.0175).
    20. 20)
      • 4. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: ‘Characterization of thermoelectric modules for powering autonomous sensors’. Instrumentation and Measurement Technology Conf., Warsaw, Poland, May 2007, pp. 16.
    21. 21)
      • 19. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B., Yao, D.J.: ‘Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators’, Appl. Energy, 2011, 88, (4), pp. 12911297 (doi: 10.1016/j.apenergy.2010.10.005).
    22. 22)
      • 3. Ahiska, R., Dislitas, S.: ‘Microcontroller based thermoelectric generator application’, J. Fac. Eng. Archit. Gaz., 2006, 19, (2), pp. 135141.
    23. 23)
      • 21. Qiu, K., Hayden, A.C.S.: ‘Integrated thermoelectric generator and application to self-powered heating systems’. Int. Conf. Thermoelectrics, Vienna, Austria, August 2006, pp. 198203.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0320
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address