access icon free Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros

Applying a land-based designed pitch controller on a floating wind turbine may cause severe instability. A common strategy to overcome this problem is to reduce the closed-loop bandwidth of the pitch control system. In doing so, the generator speed variation increases possibly leading to shutdowns because of overspeed. This study uses a parallel path modification to avoid instability without increasing the generator speed variation. The results of comprehensive simulations and load calculations carried out on a benchmark wind turbine are presented. These demonstrate that by using the proposed method it is possible to apply the land-based designed pitch controller on its floater-based equivalent.

Inspec keywords: control system synthesis; compensation; power system stability; power generation control; offshore installations; angular velocity control; closed loop systems; wind turbines; rotors

Other keywords: instability; parallel path modification; generator speed variation; rotor speed variation reduction; NREL offshore wind turbine; floating wind turbine; closed-loop bandwidth reduction; compensation; land-based designed pitch controller application; floater-based equivalent; nonminimum phase zero; OC3-Hywind spar buoy

Subjects: Control of electric power systems; Stability in control theory; Wind power plants; Velocity, acceleration and rotation control; Power system control; Control system analysis and synthesis methods

References

    1. 1)
      • 11. Bossanyi, E.A., Ramtharan, G., Savini, B.: ‘The importance of control in wind turbine design and loading’. 17th Mediterranean Conf. on Control and Automation, 2009, pp. 12691274.
    2. 2)
      • 4. Leithead, W., Dominguez, S.: ‘Coordinated control design for wind turbine control systems’. Scientific Proc. EWEC, Athens, Greece, 2006, pp. 5659.
    3. 3)
      • 10. Namik, H., Stol, K.: ‘Disturbance accommodating control of floating offshore wind turbines’. 47th AIAA Aerospace Sciences Meeting, January 2009.
    4. 4)
      • 14. Jonkman, J., Matha, D.: ‘Dynamics of offshore floating wind turbines – analysis of three concepts’, Wind Energy, 2011, 14, pp. 557569 (doi: 10.1002/we.442).
    5. 5)
      • 7. Jonkman, J., Buhl, M.: ‘FAST user's guide’. NREL/EL-500-38230, Technical Report, August 2005.
    6. 6)
      • 15. Niederstucke, B., Anders, A., Dalhoff, P., Grzybowski, R.: ‘Load data analysis for wind turbine gearboxes’. Technical Report, Germanischer Lloyd WindEnergie GmbH, 2002.
    7. 7)
      • 3. Skaare, B., Hanson, T., Nielsen, F., et al: ‘Integrated dynamic analysis of floating offshore wind turbines’. Proc. EWEC 2007, Milan, Italy, 2007.
    8. 8)
      • 6. Jonkman, J.: ‘Definition of the floating system for phase IV of OC3’. NREL/TP-500-47535, Technical Report, May2010.
    9. 9)
      • 12. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: ‘Definition of a 5 MW reference wind turbine for offshore system development’. NREL/TP-500-38060, Technical Report, February 2009.
    10. 10)
      • 2. Larsen, T., Hanson, T.: ‘A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine’. The Science of Making Torque from Wind. J Phys.: Conf. Ser, DTU, Copenhagen (DK), 2007, vol. 75.
    11. 11)
      • 9. Horowitz, I.: ‘Synthesis of feedback systems’ (Academic Press, 1963).
    12. 12)
      • 13. Jonkman, J.: ‘Dynamics modeling and loads analysis of an offshore floating wind turbine’. NREL/TP-500-41958, November 2007.
    13. 13)
      • 16. Fischer, B.: ‘Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros’. Scientific Proc. EWEA, 2012, pp. 144147.
    14. 14)
      • 5. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, (2), pp. 123138 (doi: 10.1049/iet-rpg:20070044).
    15. 15)
      • 1. Jonkman, J.: ‘Influence of control on the pitch damping of a floating wind turbine’. 46th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, 2008.
    16. 16)
      • 8. Jasniewicz, B., Geyler, M.: ‘Wind turbine modelling and identification for control system applications’. Scientific Proc. EWEA, Bruxelles, Belgium, 2010, pp. 280283.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0263
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0263
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading