access icon free Supervisory control and data acquisition data-based non-linear state estimation technique for wind turbine gearbox condition monitoring

Offshore wind energy is catching increasing worldwide interest. However, access and maintenance offshore can be difficult and will be more costly than onshore, and hence, availability is correspondingly lower. As a result, there is a growing interest in wind turbine condition monitoring with condition-based rather than responsive and scheduled maintenance. A non-linear state estimation technique (NSET) model is presented here to model a healthy wind turbine gearbox using stored historical data. These data capture the inter-relationship between the model input and output parameters. The state vectors comprising the data should cover as much as turbine operational range, including the extreme conditions in order to obtain an accurate model performance. A model so constructed can be applied to assess the operational data. Welch's t-test is employed in the fault detection algorithm, together with suitable time series filtering, to identify incipient anomalies in the turbine gearbox before they develop into catastrophic faults. Two case studies based on 10-minute supervisory control and data acquisition data from a commercial wind farm are presented to demonstrate the model's effectiveness. Comparison is made with neural network modelling, and the NSET approach is demonstrated to be superior.

Inspec keywords: wind turbines; neural nets; nonlinear estimation; SCADA systems; condition monitoring; mechanical engineering computing; fault diagnosis; maintenance engineering; power engineering computing; time series; wind power plants

Other keywords: nonlinear state estimation technique; neural network modelling; stored historical data; fault detection algorithm; catastrophic faults; healthy wind turbine gearbox; wind turbine gearbox condition monitoring; turbine operational range; wind farm; offshore maintenance; Welch t-test; NSET model; supervisory control and data acquisition data system

Subjects: Power and plant engineering (mechanical engineering); Other topics in statistics; Other topics in statistics; Wind power plants; Plant engineering, maintenance and safety; Maintenance and reliability; Civil and mechanical engineering computing; Statistics; Mechanical components; Neural computing techniques; Mechanical engineering applications of IT; Power engineering computing

References

    1. 1)
      • 24. Schlechtingen, M., Santos, I.F.: ‘Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection’, Mech. Syst. Signal Process., 2011, 25, (5), pp. 18491875 (doi: 10.1016/j.ymssp.2010.12.007).
    2. 2)
      • 6. Feng, Y., Qiu, Y., Crabtree, C.J., Long, H., Tavner, P.J.: ‘Monitoring wind turbine gearboxes’, Wind Energy, 2012.
    3. 3)
      • 19. Guo, P., Infield, D., Yang, X.: ‘Wind turbine generator condition-monitoring using temperature trend analysis’, IEEE Trans. Sustain. Energy, 2012, 1, (3), pp. 124133 (doi: 10.1109/TSTE.2011.2163430).
    4. 4)
      • 14. Zaher, A., McArther, S.D.J., Infield, D.G., Patel, Y.: ‘Online wind turbine fault detection through automated SCADA data analysis’, Wind Energy, 2009, 12, pp. 574593 (doi: 10.1002/we.319).
    5. 5)
      • 21. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description’, Appl. Soft Comput., 2013, 13, (1), pp. 259270 (doi: 10.1016/j.asoc.2012.08.033).
    6. 6)
      • 18. Kusiak, A., Verma, A.: ‘A data-driven approach for monitoring blade pitch faults in wind turbines’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 8796.
    7. 7)
      • 23. Sawilowsky, S.S.: ‘Fermat, Schubert, Einstein, Behrens–Fisher, the probable difference between two means when σ1σ2’, J. Modern Appl. Stat. Meth., 2002, 1, (2), pp. 461472.
    8. 8)
      • 11. Zaher, A.: ‘Automated fault detection for wind farm condition monitoring’, PhD thesis, University of Strathclyde, September 2010.
    9. 9)
      • 5. Crabtree, C.J., Feng, Y., Tavner, P.J.: ‘Detecting incipient wind turbine gearbox failure: a signal analysis method for on-line condition monitoring’. European Wind Energy Conf., Warsaw, Poland, 2010, doi: 10.1002/we.1521.
    10. 10)
      • 25. Rojas, R.: ‘Neural networks: a systematic introduction’ (Springer, Berlin, 1996).
    11. 11)
      • 17. Sainz, E., Llombart, A., Guerrero, J.J.: ‘Robust filtering for the characterization of wind turbines: Improving its operation and maintenance’, Energy Convers. Manage., 2009, 50, (9), pp. 21362147 (doi: 10.1016/j.enconman.2009.04.036).
    12. 12)
      • 12. Gray, C.S., Watson, S.J.: ‘Physics of failure approach to wind turbine condition based maintenance’, Wind Energy, 2010, 13, pp. 395405 (doi: 10.1002/we.360).
    13. 13)
      • 22. Black, C.L., Uhrig, R.E., Hines, J.W.: ‘System modeling and instrument calibration verification with a nonlinear state estimation technique’. Maintenance and Reliable Conf., Knoxville, TN, May 1998.
    14. 14)
      • 1. Tavner, P.J., Xiang, J., Spinato, F.: ‘Reliability analysis for wind turbines’, Wind Energy, 2007, 10, pp. 118 (doi: 10.1002/we.204).
    15. 15)
      • 15. Garcia, M.C., Sanz-Bobi, M.A., Pico, J.D.: ‘SIMAP: Intelligent system for predictive maintenance: application to health condition monitoring of a wind turbine gearbox’, Comput. Ind., 2006, 6, (57), pp. 552568 (doi: 10.1016/j.compind.2006.02.011).
    16. 16)
      • 4. Faulstich, S., Hahn, B., Tavner, P.J.: ‘Wind turbine downtime and its importance for offshore deployment’, Wind Energy, 2011, 14, pp. 327337 (doi: 10.1002/we.421).
    17. 17)
      • 7. Caselitz, P., Giebhardt, J., Mevenkamp, M.: ‘Application of condition monitoring systems in wind energy convertors’. Proc. EWEC, Dublin, 2007.
    18. 18)
      • 10. Yang, W., Tavner, P.J., Crabtree, C.J., Wilkinson, M.: ‘Cost-effective condition monitoring for wind turbines’, IEEE Trans. Ind. Electron., 2010, 1, (57), pp. 263271 (doi: 10.1109/TIE.2009.2032202).
    19. 19)
      • 3. Spinato, F., Tavner, P.J., van Bussel, G.J.W., Koutoulakos, E.: ‘Reliability of wind turbine subassemblies’, IET Renew. Power Gener., 2009, 3, pp. 115 (doi: 10.1049/iet-rpg.2008.0060).
    20. 20)
      • 13. Hyers, R.W., McGowan, J.G., Sullivan, K.L., Manwell, J.F., Syrett, B.C.: ‘Condition monitoring and prognosis of utility scale wind turbines’, Energy Mater., 2006, 1, (3), pp. 187203 (doi: 10.1179/174892406X163397).
    21. 21)
      • 26. Yu, H., Wilamowski, B.M.: ‘Levenberg–Marquardt training’. In: Wilamowski, Bogdan M.David Irwin, J., ‘The Industrial Electronics Handbook, Vol. 5 – Intelligent Systems’, 2nd edn, (CRC Press, Boca Raton, 2011)..
    22. 22)
      • 8. Ebersbach, S., Peng, Z., Kessissoglou, N.J.: ‘The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques’, Wear, 2006, 1–2, (260), pp. 1624 (doi: 10.1016/j.wear.2004.12.028).
    23. 23)
      • 2. Qiu, Y., Feng, Y., Tavner, P., Richardson, P., Erdos, G., Chen, B.: ‘Wind turbine SCADA alarm analysis for improving reliability’, Wind Energy, 2012, 15, pp. 951966 (doi: 10.1002/we.513).
    24. 24)
      • 9. Hameed, Z., Hong, Y.S., Cho, Y.M., Ahn, S.H., Song, C.K.: ‘Condition monitoring and fault detection of wind turbines and related algorithms: A review’, Renew. Sustain. Energy Rev., 2009, 1, (2), pp. 139 (doi: 10.1016/j.rser.2007.05.008).
    25. 25)
      • 20. Bockhorst, F.K., Gross, K.C., Herzog, J.P., Wegerich, S.W.: ‘MSET modeling of crystal river-3 venturi flow meters’. Int. Conf. Nuclear Engineering, San Diego, 1998.
    26. 26)
      • 16. Hecht-Nielsen, R.: ‘Theory of the backpropagation neural network’, Int. Joint Conf. Neural Netw., 1989, 1, pp. 593605 (doi: 10.1109/IJCNN.1989.118638).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0215
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading