Supervisory control and data acquisition data-based non-linear state estimation technique for wind turbine gearbox condition monitoring

Supervisory control and data acquisition data-based non-linear state estimation technique for wind turbine gearbox condition monitoring

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Offshore wind energy is catching increasing worldwide interest. However, access and maintenance offshore can be difficult and will be more costly than onshore, and hence, availability is correspondingly lower. As a result, there is a growing interest in wind turbine condition monitoring with condition-based rather than responsive and scheduled maintenance. A non-linear state estimation technique (NSET) model is presented here to model a healthy wind turbine gearbox using stored historical data. These data capture the inter-relationship between the model input and output parameters. The state vectors comprising the data should cover as much as turbine operational range, including the extreme conditions in order to obtain an accurate model performance. A model so constructed can be applied to assess the operational data. Welch's t-test is employed in the fault detection algorithm, together with suitable time series filtering, to identify incipient anomalies in the turbine gearbox before they develop into catastrophic faults. Two case studies based on 10-minute supervisory control and data acquisition data from a commercial wind farm are presented to demonstrate the model's effectiveness. Comparison is made with neural network modelling, and the NSET approach is demonstrated to be superior.


    1. 1)
      • 1. Tavner, P.J., Xiang, J., Spinato, F.: ‘Reliability analysis for wind turbines’, Wind Energy, 2007, 10, pp. 118 (doi: 10.1002/we.204).
    2. 2)
      • 2. Qiu, Y., Feng, Y., Tavner, P., Richardson, P., Erdos, G., Chen, B.: ‘Wind turbine SCADA alarm analysis for improving reliability’, Wind Energy, 2012, 15, pp. 951966 (doi: 10.1002/we.513).
    3. 3)
      • 3. Spinato, F., Tavner, P.J., van Bussel, G.J.W., Koutoulakos, E.: ‘Reliability of wind turbine subassemblies’, IET Renew. Power Gener., 2009, 3, pp. 115 (doi: 10.1049/iet-rpg.2008.0060).
    4. 4)
      • 4. Faulstich, S., Hahn, B., Tavner, P.J.: ‘Wind turbine downtime and its importance for offshore deployment’, Wind Energy, 2011, 14, pp. 327337 (doi: 10.1002/we.421).
    5. 5)
      • 5. Crabtree, C.J., Feng, Y., Tavner, P.J.: ‘Detecting incipient wind turbine gearbox failure: a signal analysis method for on-line condition monitoring’. European Wind Energy Conf., Warsaw, Poland, 2010, doi: 10.1002/we.1521.
    6. 6)
      • 6. Feng, Y., Qiu, Y., Crabtree, C.J., Long, H., Tavner, P.J.: ‘Monitoring wind turbine gearboxes’, Wind Energy, 2012.
    7. 7)
      • 7. Caselitz, P., Giebhardt, J., Mevenkamp, M.: ‘Application of condition monitoring systems in wind energy convertors’. Proc. EWEC, Dublin, 2007.
    8. 8)
      • 8. Ebersbach, S., Peng, Z., Kessissoglou, N.J.: ‘The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques’, Wear, 2006, 1–2, (260), pp. 1624 (doi: 10.1016/j.wear.2004.12.028).
    9. 9)
      • 9. Hameed, Z., Hong, Y.S., Cho, Y.M., Ahn, S.H., Song, C.K.: ‘Condition monitoring and fault detection of wind turbines and related algorithms: A review’, Renew. Sustain. Energy Rev., 2009, 1, (2), pp. 139 (doi: 10.1016/j.rser.2007.05.008).
    10. 10)
      • 10. Yang, W., Tavner, P.J., Crabtree, C.J., Wilkinson, M.: ‘Cost-effective condition monitoring for wind turbines’, IEEE Trans. Ind. Electron., 2010, 1, (57), pp. 263271 (doi: 10.1109/TIE.2009.2032202).
    11. 11)
      • 11. Zaher, A.: ‘Automated fault detection for wind farm condition monitoring’, PhD thesis, University of Strathclyde, September 2010.
    12. 12)
      • 12. Gray, C.S., Watson, S.J.: ‘Physics of failure approach to wind turbine condition based maintenance’, Wind Energy, 2010, 13, pp. 395405 (doi: 10.1002/we.360).
    13. 13)
      • 13. Hyers, R.W., McGowan, J.G., Sullivan, K.L., Manwell, J.F., Syrett, B.C.: ‘Condition monitoring and prognosis of utility scale wind turbines’, Energy Mater., 2006, 1, (3), pp. 187203 (doi: 10.1179/174892406X163397).
    14. 14)
      • 14. Zaher, A., McArther, S.D.J., Infield, D.G., Patel, Y.: ‘Online wind turbine fault detection through automated SCADA data analysis’, Wind Energy, 2009, 12, pp. 574593 (doi: 10.1002/we.319).
    15. 15)
      • 15. Garcia, M.C., Sanz-Bobi, M.A., Pico, J.D.: ‘SIMAP: Intelligent system for predictive maintenance: application to health condition monitoring of a wind turbine gearbox’, Comput. Ind., 2006, 6, (57), pp. 552568 (doi: 10.1016/j.compind.2006.02.011).
    16. 16)
      • 16. Hecht-Nielsen, R.: ‘Theory of the backpropagation neural network’, Int. Joint Conf. Neural Netw., 1989, 1, pp. 593605 (doi: 10.1109/IJCNN.1989.118638).
    17. 17)
      • 17. Sainz, E., Llombart, A., Guerrero, J.J.: ‘Robust filtering for the characterization of wind turbines: Improving its operation and maintenance’, Energy Convers. Manage., 2009, 50, (9), pp. 21362147 (doi: 10.1016/j.enconman.2009.04.036).
    18. 18)
      • 18. Kusiak, A., Verma, A.: ‘A data-driven approach for monitoring blade pitch faults in wind turbines’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 8796.
    19. 19)
      • 19. Guo, P., Infield, D., Yang, X.: ‘Wind turbine generator condition-monitoring using temperature trend analysis’, IEEE Trans. Sustain. Energy, 2012, 1, (3), pp. 124133 (doi: 10.1109/TSTE.2011.2163430).
    20. 20)
      • 20. Bockhorst, F.K., Gross, K.C., Herzog, J.P., Wegerich, S.W.: ‘MSET modeling of crystal river-3 venturi flow meters’. Int. Conf. Nuclear Engineering, San Diego, 1998.
    21. 21)
      • 21. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description’, Appl. Soft Comput., 2013, 13, (1), pp. 259270 (doi: 10.1016/j.asoc.2012.08.033).
    22. 22)
      • 22. Black, C.L., Uhrig, R.E., Hines, J.W.: ‘System modeling and instrument calibration verification with a nonlinear state estimation technique’. Maintenance and Reliable Conf., Knoxville, TN, May 1998.
    23. 23)
      • 23. Sawilowsky, S.S.: ‘Fermat, Schubert, Einstein, Behrens–Fisher, the probable difference between two means when σ1σ2’, J. Modern Appl. Stat. Meth., 2002, 1, (2), pp. 461472.
    24. 24)
      • 24. Schlechtingen, M., Santos, I.F.: ‘Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection’, Mech. Syst. Signal Process., 2011, 25, (5), pp. 18491875 (doi: 10.1016/j.ymssp.2010.12.007).
    25. 25)
      • 25. Rojas, R.: ‘Neural networks: a systematic introduction’ (Springer, Berlin, 1996).
    26. 26)
      • 26. Yu, H., Wilamowski, B.M.: ‘Levenberg–Marquardt training’. In: Wilamowski, Bogdan M.David Irwin, J., ‘The Industrial Electronics Handbook, Vol. 5 – Intelligent Systems’, 2nd edn, (CRC Press, Boca Raton, 2011)..

Related content

This is a required field
Please enter a valid email address