access icon free Power optimisation of a point absorber wave energy converter by means of linear model predictive control

This study presents a model predictive control (MPC) scheme for a wave energy converter (WEC); in particular, for a buoy-type point absorber. The WEC is a two-body system which is taut-moored to the sea floor with three cables. Much research has been done recently to achieve optimal operation of WECs. The goal is to maximise the power conversion without violating system limits. In practice, there are physical constraints on position, velocity and the power take-off (PTO) force. MPC is a promising and beneficial approach to achieve this goal. It poses a control formulation including constraints in a natural way. Furthermore, MPC can exploit predictions for the sea motion a standard MPC approach always needs a reference trajectory. For one-body point absorber, an optimal velocity trajectory can be calculated. However, an optimal trajectory is not easily available for the two-body case. The proposed formulation in the presented work does not require an optimal trajectory. For this reason it is possible to apply this MPC scheme to a two-body model as well. This work demonstrates that the proposed control algorithm optimises the power extraction without violating the system constraints. Finally, the performance of MPC is compared to linear passive load control through simulation.

Inspec keywords: optimisation; wave power generation; power convertors; constraint handling; predictive control; power system control

Other keywords: sea motion prediction; optimal velocity trajectory; cable; sea floor; constraint handling; point absorber WEC; two body system; power extraction optimisation; model predictive control; power conversion; one body point absorber; wave energy converter; linear MPC approach; PTO; buoy type point absorber; taut moored; power take-off

Subjects: Optimisation techniques; Tidal and flow energy; Optimal control; Optimisation techniques; Wave power; Control of electric power systems; Power convertors and power supplies to apparatus

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 21. Ruehl, K.: ‘Time-domain modeling of heaving point absorber wave energy converters, including power take-off and mooring’. Master's thesis, Oregon State University, Mechanical Engineering, 2011.
    8. 8)
      • 12. Rusch, E.: ‘Catching a wave, powering an electrical grid?’. Smithsonian Magazine, 2009.
    9. 9)
    10. 10)
    11. 11)
      • 17. Wills, A., Heath, W.: ‘EE03016 – interior-point methods for linear model predictive control’, Technical Report, University of Newcastle, Australia, 2003.
    12. 12)
    13. 13)
      • 13. Eidsmoen, H.: ‘Simulation of a slack-moored heaving-buoy wave-energy converter with phase control’. PhD dissertation, Norwegian University of Science and Technology, Trondheim, Norway, 1996.
    14. 14)
    15. 15)
    16. 16)
      • 18. Nocedal, J., Wright, S.J.: ‘Numerical optimization’ (Springer, 2006).
    17. 17)
      • 1. Muetze, A., Vining, J.: ‘Ocean wave energy conversion – a survey’. Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE, October 2006, vol. 3, pp. 14101417.
    18. 18)
      • 4. Falcão, A.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustainable Energy Rev., 2010, 14, (3), pp. 899918 (doi: 10.1016/j.rser.2009.11.003).
    19. 19)
      • 20. Scokaert, P.O.M., Rawlings, J.B.: ‘Feasibility issues in linear model predictive control’, AIChE J., 1999, 45, (8), pp. 16491659 (doi: 10.1002/aic.690450805).
    20. 20)
      • 22. ANSYS Inc. ANSYS AQWA 13.0. 275 Technology Drive, Canonsburg, PA.
    21. 21)
      • 13. Eidsmoen, H.: ‘Simulation of a slack-moored heaving-buoy wave-energy converter with phase control’. PhD dissertation, Norwegian University of Science and Technology, Trondheim, Norway, 1996.
    22. 22)
      • 2. U.S. Energy Information Administration: ‘International Energy Outlook 2011’, http://www.eia.gov/, September 2011.
    23. 23)
      • 12. Rusch, E.: ‘Catching a wave, powering an electrical grid?’. Smithsonian Magazine, 2009.
    24. 24)
      • 27. Polinder, H., Mecrow, B., Jack, A., Dickinson, P., Mueller, M.: ‘Conventional and TFPM linear generators for direct-drive wave energy conversion’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 260267 (doi: 10.1109/TEC.2005.845522).
    25. 25)
      • 5. Babarit, A., Clément, A.: ‘Optimal latching control of a wave energy device in regular and irregular waves’, Appl. Ocean Res., 2006, 28, (2), pp. 7791 (doi: 10.1016/j.apor.2006.05.002).
    26. 26)
      • 10. Brekken, T.: ‘On model predictive control for a point absorber wave energy converter’. IEEE PowerTech Conf., Trondheim, Norway, 2011, pp. 18.
    27. 27)
      • 11. Hals, J., Falnes, J., Moan, T.: ‘Constrained optimal control of a heaving buoy wave-energy converter’, J. Offshore Mech. Arctic Eng., 2011, 133, pp. 011401 (doi: 10.1115/1.4001431).
    28. 28)
      • 26. Prudell, J., Stoddard, M., Amon, E., Brekken, T., von Jouanne, A.: ‘A permanent-magnet tubular linear generator for ocean wave energy conversion’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 23922400 (doi: 10.1109/TIA.2010.2073433).
    29. 29)
      • 25. Lenee-Bluhm, P., Paasch, R., Özkan-Haller, H.T.: ‘Characterizing the wave energy resource of the US Pacific Northwest’, Renew. Energy, 2011, 36, (8), pp. 21062119 (doi: 10.1016/j.renene.2011.01.016).
    30. 30)
      • 21. Ruehl, K.: ‘Time-domain modeling of heaving point absorber wave energy converters, including power take-off and mooring’. Master's thesis, Oregon State University, Mechanical Engineering, 2011.
    31. 31)
      • 15. Jefferys, E.: ‘Simulation of wave power devices’, Appl. Ocean Res., 1984, 6, (1), pp. 3139 (doi: 10.1016/0141-1187(84)90026-9).
    32. 32)
      • 14. Taghipour, R., Perez, T., Moan, T.: ‘Hybrid frequency–time domain models for dynamic response analysis of marine structures’, Ocean Eng., 2008, 35, (7), pp. 685705 (doi: 10.1016/j.oceaneng.2007.11.002).
    33. 33)
      • 3. Ruehl, K., Brekken, T., Bosma, B., Paasch, R.: ‘Large-scale ocean wave energy plant modeling’. 2010 IEEE Conf. Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES), September 2010, pp. 379386.
    34. 34)
      • 23. Chakrabarti, S.K.: ‘Handbook of offshore engineering’ (Elsevier, 2005).
    35. 35)
      • 17. Wills, A., Heath, W.: ‘EE03016 – interior-point methods for linear model predictive control’, Technical Report, University of Newcastle, Australia, 2003.
    36. 36)
      • 16. Chen, C.: ‘Linear system theorie and design’ (Oxford University Press, 1999).
    37. 37)
      • 7. Falnes, J.: ‘Ocean waves and oscillating systems, linear interaction including wave-energy extraction’ (Cambridge University Press, 2002).
    38. 38)
      • 8. Brekken, T., von Jouanne, A., Han, H.Y.: ‘Ocean wave energy overview and research at Oregon State University’. IEEE Power Electronics and Machines in Wind Applications, 2009. PEMWA 2009, June 2009, pp. 17.
    39. 39)
      • 19. Rao, C.V., Wright, S.J., Rawlings, J.B.: ‘Application of interior-point methods to model predictive control’, J. Optim. Theory Appl., 1998, 99, pp. 723757 (doi: 10.1023/A:1021711402723).
    40. 40)
      • 6. Hals, J., Bjarte-Larsson, T., Falnes, J.: ‘Optimum reactive control and control by latching of a wave-absorbing semisubmerged heaving sphere’. ASME Conf. Proc., 2002, vol. 2002, no. 36142, pp. 415423.
    41. 41)
      • 9. Cândido, J.J., Justino, P.A.: ‘Modelling, control and pontryagin maximum principle for a two-body wave energy device’, Renew. Energy, 2011, 36, (5), pp. 15451557 (doi: 10.1016/j.renene.2010.11.013).
    42. 42)
      • 24. National Data Buoy Center: http://www.ndbc.noaa.gov/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0214
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading