access icon free Wind turbine converter control interaction with complex wind farm systems

This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability. The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices such as gain margin, vector gain margin and phase margin are used in order to emphasise the differences between the two wind farms.

Inspec keywords: power transformers; frequency-domain analysis; power convertors; power system harmonics; wind power plants; power system stability; wind turbines; power grids; power cables; power generation control

Other keywords: harmonic-noise rejection; park transformer; grid-side converter controller; phase margin; wind turbine converter stability analysis; complex wind farm system; wind turbine converter control interaction system; low-frequency series resonance; frequency domain analysis; high-voltage alternating current cable; vector gain margin

Subjects: Power supply quality and harmonics; Power convertors and power supplies to apparatus; Power cables; Stability in control theory; Wind power plants; Transformers and reactors; Power system control; Control of electric power systems

References

    1. 1)
      • 5. Brogan, P.: ‘The stability of multiple, high power, active front end voltage sourced converters when connected to wind farm collector systems’. EPE Wind Energy Chapter Seminar, Stafford, 2010, pp. 16.
    2. 2)
      • 1. Kocewiak, Ł.H., Hjerrild, J., Leth Bak, C.: ‘Wind farm structures’ impact on harmonic emission and grid interaction’. European Wind Energy Conf., Warsaw, 2010, pp. 18.
    3. 3)
      • 2. Garcia-Gracia, M., Paz Comech, M., Sallan, J., Llombart, A.: ‘Modelling wind farms for grid disturbance studies’, Renew. Energy, 2008, 33, (9), pp. 21092121 (doi: 10.1016/j.renene.2007.12.007).
    4. 4)
      • 12. Stata R. (n.d.). Operational Integrators. Application Note, Analog Devices, Massachusetts.
    5. 5)
      • 6. Jones, R., Brogan, P.B., Grondahl, E., Stiesdal, H.: Patent No. 7 372 174 B2, USA, May 13, 2008.
    6. 6)
      • 15. Ogata, K.: ‘Modern control engineering’ (Prentice-Hall, USA, 1997, 3rd edn.).
    7. 7)
      • 8. Zmood, D.N., Holmes, D.G., Bode, G.: ‘Frequency-domain analysis of three-phase linear current regulators’, Trans. Ind. Appl., 2001, 37, (2), pp. 601610 (doi: 10.1109/28.913727).
    8. 8)
      • 14. Franklin, G., Powell, J.D., Emami-Naeini, A.: ‘Feedback control of dynamic systems’ (Prentice-Hall, 2002, 4th edn.).
    9. 9)
      • 9. Kulka, A., Undeland, T., Vazquez, S., Franquelo, L.G.: ‘Stationary frame voltage harmonic controller for standalone power generation’. European Conf. Power Electronics and Applications, Aalborg, 2007, pp. 110.
    10. 10)
      • 4. Timbus, A., Liserre, M., Teodorescu, R., Rodriguez, P., Blaabjerg, F.: ‘Evaluation of current controllers for distributed power generation systems’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 654664 (doi: 10.1109/TPEL.2009.2012527).
    11. 11)
      • 3. Fernandez, L.M., Garcia, C.A., Saenz, J.R., Jurado, F.: ‘Equivalent models of wind farms by using aggregated wind turbines and equivalent winds’, Energy Convers. Manage., 2009, 50, (3), pp. 691704 (doi: 10.1016/j.enconman.2008.10.005).
    12. 12)
      • 11. Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.C.: ‘Proportional-resonant controllers and filters for grid-connected voltage-source converters’, IEE Proc. Electr. Power Appl., 2006, 153, (5), pp. 750762 (doi: 10.1049/ip-epa:20060008).
    13. 13)
      • 10. Song, H.-S., Nam, K.: ‘Dual current control scheme for PWM converter under unbalanced input voltage conditions’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 953959 (doi: 10.1109/41.793344).
    14. 14)
      • 16. Liserre, M., Teodorescu, R., Blaabjerg, F.: ‘Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values’, IEEE Trans. Power Electron., 2006, 21, (1), pp. 263272 (doi: 10.1109/TPEL.2005.861185).
    15. 15)
      • 13. Franklin, G.F., Powell, J.D., Workman, M.L.: ‘Digital control of dynamic systems’ (Prentice-Hall, 2006, 3rd edn.).
    16. 16)
      • 7. Kocewiak, Ł.: ‘Harmonics in large offshore wind farms’. PhD thesis, Aalborg University, Aalborg, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0209
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading