access icon free Power peaks against installed capacity in tidal stream energy

Owing to the natural variability of tidal flow, the curve of available power against time at the site of a tidal stream plant is typically spiky. This means that, for the power peaks to be fully exploited, the installed capacity of the plant would have to be large relative to its mean power output. In practice, a balance should be struck between the percentage of the total resource that is exploited and the installed power (and installation cost) of the plant. The purpose of this study is to examine this problematic through a case study: a tidal stream plant proposed for Ria de Ortigueira, a large estuary in north-west Spain with a tidal range of 4.5 m. A numerical model of the estuary hydrodynamics is implemented, calibrated and successfully validated using field data. The model is used to determine the tidal flow patterns. The question of the installed capacity is examined for the two areas with the greatest potential as tidal stream sites. It is shown that the nominal power that is required can be greatly reduced by relinquishing the peaks of the power curve, with only a slight reduction in the energy output.

Inspec keywords: hydrodynamics; tides; power generation economics; tidal power stations

Other keywords: tidal stream energy; tidal stream plant; Ria de Ortigueira; power curve; tidal flow pattern; power plant installation cost; estuary hydrodynamics; numerical model; power peaks; north-west Spain

Subjects: Power system management, operation and economics; Tidal power stations and plants; Europe; Surface waves, tides, and sea level; Coastal and estuarine oceanography

References

    1. 1)
      • 6. Charlierand, R.H., Finkl, C.W.: ‘Ocean energy: tide and tidal power’ (Springer, 2008).
    2. 2)
      • 24. Dyer, K.E.: ‘Estuaries: A physical introduction’ (John Wiley, 1997).
    3. 3)
      • 15. http://www.emec.org.
    4. 4)
      • 26. Smith, S.D.: ‘Wind stress and heat flux over the ocean in gale force winds’, J. Phys. Oceanogr., 1980, 10, (5, May 1980), pp. 709726 (doi: 10.1175/1520-0485(1980)010<0709:WSAHFO=2.0.CO;2).
    5. 5)
      • 30. Rammingand, H.G., Kowalik, Z.: ‘Numerical modelling of marine hydrodynamics: applications to dynamic physical processes’ (Elsevier Scientific Publications, 1980).
    6. 6)
      • 21. Delft Hydraulics: ‘A simulation program for hydrodynamic flows and transports in 2 and 3 dimensions’ (TRISULA, 1995).
    7. 7)
      • 2. Iglesias, G., Carballo, R.: ‘Wave resource in El Hierro – an island towards energy self-sufficiency’, Renew. Energy, 2011, 36, (2), pp. 689698 (doi: 10.1016/j.renene.2010.08.021).
    8. 8)
      • 9. Xia, J., Falconer, R.A., Lin, B.: ‘Impact of different operating modes for a severn barrage on the tidal power and flood inundation in the Severn Estuary, UK’, Appl. Energy, 2010, 87, (7), pp. 23742391 (doi: 10.1016/j.apenergy.2009.11.024).
    9. 9)
      • 12. Bahaj, A.S., Myers, L.E.: ‘Fundamentals applicable to the utilisation of marine current turbines for energy production’, Renew. Energy, 2003, 28, (14), pp. 22052211 (doi: 10.1016/S0960-1481(03)00103-4).
    10. 10)
      • 17. Egbert, G.D., Bennett, A.F., Foreman, M.G.G.: ‘Topex/Poseidon tides estimated using a global inverse model’, J. Geophys. Res., 1994, 99, pp. 2482152 (doi: 10.1029/94JC01894).
    11. 11)
      • 4. Cruz, J.: ‘Ocean wave energy’ (Springer, 2008).
    12. 12)
      • 20. ‘User Manual Delft3D-FLOW’, 2010.
    13. 13)
      • 29. Iglesias, G., Carballo, R., Castro, A.: ‘Baroclinic modelling and analysis of tide- and wind-induced circulation in the Ría de Muros (NW Spain)’, J. Mar. Syst., 2008, 74, (1–2), pp. 475484 (doi: 10.1016/j.jmarsys.2008.03.009).
    14. 14)
      • 25. Dias, J.M., Lopes, J.F.: ‘Implementation and assessment of hydrodynamic, salt and heat transport models: the case of Ria de Aveiro Lagoon (Portugal)’, Environ. Model. Softw., 2006, 21, (1), pp. 115 (doi: 10.1016/j.envsoft.2004.09.002).
    15. 15)
      • 16. Díez, J.: ‘Las costas’ (Alianza Editorial, 1996).
    16. 16)
      • 11. Carballo, R., Iglesias, G., Castro, A.: ‘Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)’, Renew. Energy, 2009, 34, (6), pp. 15171524 (doi: 10.1016/j.renene.2008.10.028).
    17. 17)
      • 18. Gladkikh, V., Tenzer, R.: ‘A comparison of model estimates of ocean-tide loading displacements in New Zealand’, J. Geodetic Sci., 2011, 1, (2), pp. 94113.
    18. 18)
      • 7. Bae, Y.H., Kim, K.O., Choi, B.H.: ‘Lake Sihwa tidal power plant project’, Ocean Eng., 2010, 37, (5–6), pp. 454463 (doi: 10.1016/j.oceaneng.2010.01.015).
    19. 19)
      • 37. O Rourke, F., Boyle, F., Reynolds, A.: ‘Tidal energy update 2009’, Appl. Energy, 2010, 87, (2), pp. 398409 (doi: 10.1016/j.apenergy.2009.08.014).
    20. 20)
      • 23. Iglesias, G., Sánchez, M., Carballo, R., Fernández, H.: ‘The TSE index – a new tool for selecting tidal stream sites in depth-limited regions’, Renew. Energy, 2012, 48, (0), pp. 350357 (doi: 10.1016/j.renene.2012.05.012).
    21. 21)
      • 5. Pontes, M.T., Aguiar, R., Oliveira Pires, H.: ‘A nearshore wave energy atlas for Portugal’, J. Offshore Mech. Arct. Eng., 2005, 127, pp. 249255 (doi: 10.1115/1.1951779).
    22. 22)
      • 3. Iglesias, G., Carballo, R.: ‘Choosing the site for the first wave farm in a region: a case study in the Galician Southwest (Spain)’, Energy, 2011, 36, (9), pp. 55255531 (doi: 10.1016/j.energy.2011.07.022).
    23. 23)
      • 8. Ahmadian, R., Falconer, R., Lin, B.: ‘Hydro-environmental modelling of proposed severn barrage, UK’, Proc. Inst. Civ. Eng. – Energy, 2010, 163, (EN3), pp. 107117.
    24. 24)
      • 39. http://www.ine.es, accessed 23 November 2011.
    25. 25)
      • 32. European Commission: ‘The exploitation of tidal marine currents’. Report EUR16683EN, 1996.
    26. 26)
      • 35. Lim, Y.S., Koh, S.L.: ‘Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia’, Renew. Energy, 2010, 35, (5), pp. 10241032 (doi: 10.1016/j.renene.2009.10.016).
    27. 27)
      • 13. Draper, S., Houlsby, G.T., Oldfield, M.L.G., Borthwick, A.G.L.: ‘Modelling tidal energy extraction in a depth-averaged coastal domain’, IET Renew. Power Gener., 2010, 4, (6), pp. 545554 (doi: 10.1049/iet-rpg.2009.0196).
    28. 28)
      • 22. Blunden, L.S., Bahaj, A.S.: ‘Initial evaluation of tidal stream energy resources at Portland Bill, UK’, Renew. Energy, 2006, 31, (2), pp. 121132 (doi: 10.1016/j.renene.2005.08.016).
    29. 29)
      • 10. Xia, J., Falconer, R.A., Lin, B.: ‘Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK’, Renew. Energy, 2010, 35, (7), pp. 14551468 (doi: 10.1016/j.renene.2009.12.009).
    30. 30)
      • 34. Iglesias, G., Carballo, R.: ‘Can the seasonality of a small river affect a large tide-dominated estuary? The case of the Ria de Viveiro, Spain’, J. Coast. Res., 2011, 27, (6), pp. 11701182 (doi: 10.2112/JCOASTRES-D-11-00021.1).
    31. 31)
      • 36. Bahaj, A.S., Myers, L.: ‘Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters’, Renew. Energy, 2004, 29, (12), pp. 19311945 (doi: 10.1016/j.renene.2004.02.013).
    32. 32)
      • 31. Chow, V.T.: ‘Open-channel hydraulics’ (McGraw-Hill, 1959).
    33. 33)
      • 28. Otero, P., Ruiz-Villarreal, M., Peliz, A.: ‘Variability of river plumes off Northwest Iberia in response to wind events’, J. Mar. Syst., 2008, 72, (1–4), pp. 238255 (doi: 10.1016/j.jmarsys.2007.05.016).
    34. 34)
      • 1. Bahaj, A.S.: ‘Generating electricity from the oceans’, Renew. Sustain. Energy Rev., 2011, 15, (7), pp. 33993416 (doi: 10.1016/j.rser.2011.04.032).
    35. 35)
      • 19. Pugh, D.T.: ‘Tides, surges, and mean sea-level/a handbook for engineers and scientists’ (John Wiley & Sons Inc, 1996).
    36. 36)
      • 27. Yelland, M.J., Moat, B.I., Taylor, P.K., Pascal, R.W., Hutchings, J., Cornell, V.C.: ‘Wind stress measurements from the open ocean corrected for airflow distortion by the ship’, J. Phys. Oceanogr., 1998, 28, (7), pp. 15111526 (doi: 10.1175/1520-0485(1998)028<1511:WSMFTO=2.0.CO;2).
    37. 37)
      • 33. http://www.pulsetidal.com, accessed 14 December 2011.
    38. 38)
      • 14. McCombes, T., Johnstone, C., Grant, A.: ‘Unsteady wake modelling for tidal current turbines’, IET Renew. Power Gener., 2011, 5, (4), pp. 299310 (doi: 10.1049/iet-rpg.2009.0203).
    39. 39)
      • 38. http://www.idae.es, accessed 10 December 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0059
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading