http://iet.metastore.ingenta.com
1887

Power peaks against installed capacity in tidal stream energy

Power peaks against installed capacity in tidal stream energy

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Owing to the natural variability of tidal flow, the curve of available power against time at the site of a tidal stream plant is typically spiky. This means that, for the power peaks to be fully exploited, the installed capacity of the plant would have to be large relative to its mean power output. In practice, a balance should be struck between the percentage of the total resource that is exploited and the installed power (and installation cost) of the plant. The purpose of this study is to examine this problematic through a case study: a tidal stream plant proposed for Ria de Ortigueira, a large estuary in north-west Spain with a tidal range of 4.5 m. A numerical model of the estuary hydrodynamics is implemented, calibrated and successfully validated using field data. The model is used to determine the tidal flow patterns. The question of the installed capacity is examined for the two areas with the greatest potential as tidal stream sites. It is shown that the nominal power that is required can be greatly reduced by relinquishing the peaks of the power curve, with only a slight reduction in the energy output.

References

    1. 1)
      • 1. Bahaj, A.S.: ‘Generating electricity from the oceans’, Renew. Sustain. Energy Rev., 2011, 15, (7), pp. 33993416 (doi: 10.1016/j.rser.2011.04.032).
    2. 2)
      • 2. Iglesias, G., Carballo, R.: ‘Wave resource in El Hierro – an island towards energy self-sufficiency’, Renew. Energy, 2011, 36, (2), pp. 689698 (doi: 10.1016/j.renene.2010.08.021).
    3. 3)
      • 3. Iglesias, G., Carballo, R.: ‘Choosing the site for the first wave farm in a region: a case study in the Galician Southwest (Spain)’, Energy, 2011, 36, (9), pp. 55255531 (doi: 10.1016/j.energy.2011.07.022).
    4. 4)
      • 4. Cruz, J.: ‘Ocean wave energy’ (Springer, 2008).
    5. 5)
      • 5. Pontes, M.T., Aguiar, R., Oliveira Pires, H.: ‘A nearshore wave energy atlas for Portugal’, J. Offshore Mech. Arct. Eng., 2005, 127, pp. 249255 (doi: 10.1115/1.1951779).
    6. 6)
      • 6. Charlierand, R.H., Finkl, C.W.: ‘Ocean energy: tide and tidal power’ (Springer, 2008).
    7. 7)
      • 7. Bae, Y.H., Kim, K.O., Choi, B.H.: ‘Lake Sihwa tidal power plant project’, Ocean Eng., 2010, 37, (5–6), pp. 454463 (doi: 10.1016/j.oceaneng.2010.01.015).
    8. 8)
      • 8. Ahmadian, R., Falconer, R., Lin, B.: ‘Hydro-environmental modelling of proposed severn barrage, UK’, Proc. Inst. Civ. Eng. – Energy, 2010, 163, (EN3), pp. 107117.
    9. 9)
      • 9. Xia, J., Falconer, R.A., Lin, B.: ‘Impact of different operating modes for a severn barrage on the tidal power and flood inundation in the Severn Estuary, UK’, Appl. Energy, 2010, 87, (7), pp. 23742391 (doi: 10.1016/j.apenergy.2009.11.024).
    10. 10)
      • 10. Xia, J., Falconer, R.A., Lin, B.: ‘Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK’, Renew. Energy, 2010, 35, (7), pp. 14551468 (doi: 10.1016/j.renene.2009.12.009).
    11. 11)
      • 11. Carballo, R., Iglesias, G., Castro, A.: ‘Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)’, Renew. Energy, 2009, 34, (6), pp. 15171524 (doi: 10.1016/j.renene.2008.10.028).
    12. 12)
      • 12. Bahaj, A.S., Myers, L.E.: ‘Fundamentals applicable to the utilisation of marine current turbines for energy production’, Renew. Energy, 2003, 28, (14), pp. 22052211 (doi: 10.1016/S0960-1481(03)00103-4).
    13. 13)
      • 13. Draper, S., Houlsby, G.T., Oldfield, M.L.G., Borthwick, A.G.L.: ‘Modelling tidal energy extraction in a depth-averaged coastal domain’, IET Renew. Power Gener., 2010, 4, (6), pp. 545554 (doi: 10.1049/iet-rpg.2009.0196).
    14. 14)
      • 14. McCombes, T., Johnstone, C., Grant, A.: ‘Unsteady wake modelling for tidal current turbines’, IET Renew. Power Gener., 2011, 5, (4), pp. 299310 (doi: 10.1049/iet-rpg.2009.0203).
    15. 15)
      • 15. http://www.emec.org.
    16. 16)
      • 16. Díez, J.: ‘Las costas’ (Alianza Editorial, 1996).
    17. 17)
      • 17. Egbert, G.D., Bennett, A.F., Foreman, M.G.G.: ‘Topex/Poseidon tides estimated using a global inverse model’, J. Geophys. Res., 1994, 99, pp. 2482152 (doi: 10.1029/94JC01894).
    18. 18)
      • 18. Gladkikh, V., Tenzer, R.: ‘A comparison of model estimates of ocean-tide loading displacements in New Zealand’, J. Geodetic Sci., 2011, 1, (2), pp. 94113.
    19. 19)
      • 19. Pugh, D.T.: ‘Tides, surges, and mean sea-level/a handbook for engineers and scientists’ (John Wiley & Sons Inc, 1996).
    20. 20)
      • 20. ‘User Manual Delft3D-FLOW’, 2010.
    21. 21)
      • 21. Delft Hydraulics: ‘A simulation program for hydrodynamic flows and transports in 2 and 3 dimensions’ (TRISULA, 1995).
    22. 22)
      • 22. Blunden, L.S., Bahaj, A.S.: ‘Initial evaluation of tidal stream energy resources at Portland Bill, UK’, Renew. Energy, 2006, 31, (2), pp. 121132 (doi: 10.1016/j.renene.2005.08.016).
    23. 23)
      • 23. Iglesias, G., Sánchez, M., Carballo, R., Fernández, H.: ‘The TSE index – a new tool for selecting tidal stream sites in depth-limited regions’, Renew. Energy, 2012, 48, (0), pp. 350357 (doi: 10.1016/j.renene.2012.05.012).
    24. 24)
      • 24. Dyer, K.E.: ‘Estuaries: A physical introduction’ (John Wiley, 1997).
    25. 25)
      • 25. Dias, J.M., Lopes, J.F.: ‘Implementation and assessment of hydrodynamic, salt and heat transport models: the case of Ria de Aveiro Lagoon (Portugal)’, Environ. Model. Softw., 2006, 21, (1), pp. 115 (doi: 10.1016/j.envsoft.2004.09.002).
    26. 26)
      • 26. Smith, S.D.: ‘Wind stress and heat flux over the ocean in gale force winds’, J. Phys. Oceanogr., 1980, 10, (5, May 1980), pp. 709726 (doi: 10.1175/1520-0485(1980)010<0709:WSAHFO=2.0.CO;2).
    27. 27)
      • 27. Yelland, M.J., Moat, B.I., Taylor, P.K., Pascal, R.W., Hutchings, J., Cornell, V.C.: ‘Wind stress measurements from the open ocean corrected for airflow distortion by the ship’, J. Phys. Oceanogr., 1998, 28, (7), pp. 15111526 (doi: 10.1175/1520-0485(1998)028<1511:WSMFTO=2.0.CO;2).
    28. 28)
      • 28. Otero, P., Ruiz-Villarreal, M., Peliz, A.: ‘Variability of river plumes off Northwest Iberia in response to wind events’, J. Mar. Syst., 2008, 72, (1–4), pp. 238255 (doi: 10.1016/j.jmarsys.2007.05.016).
    29. 29)
      • 29. Iglesias, G., Carballo, R., Castro, A.: ‘Baroclinic modelling and analysis of tide- and wind-induced circulation in the Ría de Muros (NW Spain)’, J. Mar. Syst., 2008, 74, (1–2), pp. 475484 (doi: 10.1016/j.jmarsys.2008.03.009).
    30. 30)
      • 30. Rammingand, H.G., Kowalik, Z.: ‘Numerical modelling of marine hydrodynamics: applications to dynamic physical processes’ (Elsevier Scientific Publications, 1980).
    31. 31)
      • 31. Chow, V.T.: ‘Open-channel hydraulics’ (McGraw-Hill, 1959).
    32. 32)
      • 32. European Commission: ‘The exploitation of tidal marine currents’. Report EUR16683EN, 1996.
    33. 33)
      • 33. http://www.pulsetidal.com, accessed 14 December 2011.
    34. 34)
      • 34. Iglesias, G., Carballo, R.: ‘Can the seasonality of a small river affect a large tide-dominated estuary? The case of the Ria de Viveiro, Spain’, J. Coast. Res., 2011, 27, (6), pp. 11701182 (doi: 10.2112/JCOASTRES-D-11-00021.1).
    35. 35)
      • 35. Lim, Y.S., Koh, S.L.: ‘Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia’, Renew. Energy, 2010, 35, (5), pp. 10241032 (doi: 10.1016/j.renene.2009.10.016).
    36. 36)
      • 36. Bahaj, A.S., Myers, L.: ‘Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters’, Renew. Energy, 2004, 29, (12), pp. 19311945 (doi: 10.1016/j.renene.2004.02.013).
    37. 37)
      • 37. O Rourke, F., Boyle, F., Reynolds, A.: ‘Tidal energy update 2009’, Appl. Energy, 2010, 87, (2), pp. 398409 (doi: 10.1016/j.apenergy.2009.08.014).
    38. 38)
      • 38. http://www.idae.es, accessed 10 December 2011.
    39. 39)
      • 39. http://www.ine.es, accessed 23 November 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0059
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address