Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Times-series modelling for the aggregate Great Britain wind output circa 2030

The authors present a four-season model representing the aggregate output of a possible British wind fleet circa 2030, suitable for providing synthetic wind time series or a statistical characterisation of the transitional behaviour at timescales of 1 h and above. The model is fitted to an aggregated power output time series derived from historic onshore anemometry data and shown to provide a good fit to both long-term and transitional statistics. The authors show that the use of a constant factor to extrapolate anemometer-height wind speeds to hub height leads to an excessive diurnal variation in the implied wind power output. They adjust the model parameters to compensate for this and to account for the offshore component that is not present in the raw data. The complete parameter set is presented.

References

    1. 1)
      • 6. Nørgaard, P., Holttinen, H.: ‘A multi-turbine power curve approach’. Nordic Wind Power Conf., Gothenburg, Sweden, 2004.
    2. 2)
      • 7. GE Energy: ‘Western wind and solar integration study’. National Renewable Energy Laboratory, Golden, Colorado, Technical Report NREL/SR-550-47434, 2010.
    3. 3)
      • 27. Barthelmie, R., Grisogono, B., Pryor, S.: ‘Observations and simulations of diurnal cycles of near-surface wind speeds over land and sea’, J. Geophys. Res., 1996, 101, (D16), pp. 2132721337.
    4. 4)
      • 5. UK Meteorological Office: ‘Met Office Integrated Data Archive System Land surface stations data (1853–current)’. Available at http://www.badc.nerc.ac.uk.
    5. 5)
      • 15. Sturt, A., Strbac, G.: ‘Time-series modelling of power output for large-scale wind fleets’, Wind Energy, 2011, 14, (8), pp. 953966.
    6. 6)
      • 19. Peterson, E., Hennessey, J.: ‘On the use of power laws for estimates of wind power potential’, J. Appl. Meteorol., 1978, 17, pp. 390394.
    7. 7)
      • 29. Sturt, A.: ‘Stochastic scheduling of wind-integrated power systems’. Ph.D. dissertation, Imperial College, London, 2011.
    8. 8)
      • 20. Brayshaw, D., Troccoli, A., Fordham, R., Methven, J.: ‘The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: a case study over the UK’, Renew. Energy, 2011, 36, pp. 20872096.
    9. 9)
      • 2. Strbac, G., Shakoor, A., Black, M., Pudjianto, D., Bopp, T.: ‘Impact of wind generation on the operation and development of the UK electricity systems’, Electr. Power Syst. Res., 2007, 77, (9), pp. 12141227.
    10. 10)
      • 16. Box, G., Jenkins, G.: ‘Time series analysis: forecasting and control’ (Holden-Day, 1990).
    11. 11)
      • 3. Sinden, G.: ‘Characteristics of the UK wind resource: long-term patterns and relationship to electricity demand’, Energy Policy, 2007, 35, (1), pp. 112127.
    12. 12)
      • 10. Brown, B., Katz, R., Murphy, A.: ‘Time series models to simulate and forecast wind speed and wind power’, J. Appl. Meteorol., 1984, 23, (8), pp. 11841195.
    13. 13)
      • 13. Miranda, M., Dunn, R.: ‘Spatially correlated wind speed modelling for generation adequacy studies in the UK’. IEEE Power Engineering Society General Meeting, 2007.
    14. 14)
      • 4. Pöyry Energy Consulting: ‘Impact of intermittency: how wind variability could change the shape of the British and Irish electricity markets: summary report’, 2009, available at http://www.poyry.com.
    15. 15)
      • 9. Hawkins, S., Eager, D., Harrison, G.: ‘Characterising the reliability of production from future British offshore wind fleets’. Proc. IET Renewable Power Generation Conf., 2011.
    16. 16)
      • 17. Olmos Aguirre, P.: ‘Probability distribution of wind power during peak demand’. Master thesis, University of Edinburgh, 2008.
    17. 17)
      • 1. Strbac, G.: ILEX Consulting, ‘Quantifying the system costs of additional renewables in 2020. A report to the Department of Trade and Industry2002, available at http://www.berr.gov.uk.
    18. 18)
      • 23. Crawford, K., Hudson, H.: ‘The diurnal wind variation in the lowest 1500 ft in Central Oklahoma, June 1966–May 1967’, J. Appl. Meteorol., 1973, 12, pp. 127132.
    19. 19)
      • 18. Olmos Aguirre, P., Dent, C., Harrison, G., Bialek, J.: ‘Realistic calculation of wind generation capacity credits’. Cigre/IEEE Symp. Integration of Wide-Scale Renewable Resources into the Power Delivery System, Calgary, Canada, 2009.
    20. 20)
      • 12. Klöckl, B., Papaefthymiou, G.: ‘Multivariate time series models for studies on stochastic generators in power systems’, Electr. Power Syst. Res., 2010, 80, (3), pp. 265276.
    21. 21)
      • 14. Morales, J., Mnguez, R., Conejo, A.: ‘A methodology to generate statistically dependent wind speed scenarios’, Appl. Energy, 2010, 87, (3), pp. 843855.
    22. 22)
      • 21. Louie, H.: ‘Evaluation of probabilistic models of wind plant power output characteristics’. Proc. 10th Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Singapore, 2010.
    23. 23)
      • 11. Hill, D., McMillan, D., Bell, K., Infield, D., Ault, G.: ‘Application of statistical wind models for system impacts’. Universities’ Power Engineering Conf., 2009.
    24. 24)
      • 25. Schwartz, M., Elliott, D.: ‘Wind shear characteristics at central plains tall towers’. American Wind Energy Association Wind Power 2006 Conf., Pittsburgh, USA, 2006.
    25. 25)
      • 22. Heald, R., Mahrt, L.: ‘The dependence of boundary-layer shear on diurnal variation of stability’, J. Appl. Meteorol., 1981, 20, pp. 859867.
    26. 26)
      • 26. Van den Berg, G.: ‘Wind turbine power and sound in relation to atmospheric stability’, Wind Energy, 2008, 11, (2), pp. 151169.
    27. 27)
      • 8. Enernex Corporation: ‘Eastern wind integration and transmission study’. National Renewable Energy Laboratory, Technical Report NREL/SR-550-47078, 2010.
    28. 28)
      • 24. Wieringa, J.: ‘Shapes of annual frequency distributions of wind speed observed on high meteorological masts’, Bound.-Layer Meteorol., 1989, 47, (1), pp. 85110.
    29. 29)
      • 28. National Grid PLC: ‘Operating in 2020: initial consultation’, 2009, available at http://www.nationalgrid.com.
    30. 30)
    31. 31)
      • Schwartz, M., Elliott, D.: `Wind shear characteristics at central plains tall towers', American Wind Energy Association Wind Power 2006 Conf., 2006, Pittsburgh, USA.
    32. 32)
      • G. Strbac . (2002) Quantifying the system costs of additional renewables in 2020. A report to the Department of Trade and Industry.
    33. 33)
      • Enernex Corporation: ‘Eastern wind integration and transmission study’. National Renewable Energy Laboratory, Technical Report NREL/SR-550-47078, 2010.
    34. 34)
    35. 35)
      • UK Meteorological Office: ‘Met Office Integrated Data Archive System Land surface stations data (1853–current)’. Available at http://www.badc.nerc.ac.uk.
    36. 36)
    37. 37)
    38. 38)
      • Pöyry Energy Consulting: ‘Impact of intermittency: how wind variability could change the shape of the British and Irish electricity markets: summary report’, 2009, available at http://www.poyry.com.
    39. 39)
      • K. Crawford , H. Hudson . The diurnal wind variation in the lowest 1500 ft in Central Oklahoma, June 1966–May 1967. J. Appl. Meteorol. , 127 - 132
    40. 40)
      • Hawkins, S., Eager, D., Harrison, G.: `Characterising the reliability of production from future British offshore wind fleets', Proc. IET Renewable Power Generation Conf., 2011.
    41. 41)
      • G.E.P. Box , G.M. Jenkins , G.C. Reinsel . (1994) Time series analysis: forecasting and control.
    42. 42)
      • Nørgaard, P., Holttinen, H.: `A multi-turbine power curve approach', Nordic Wind Power Conf., 2004, Gothenburg, Sweden.
    43. 43)
      • Olmos Aguirre, P., Dent, C., Harrison, G., Bialek, J.: `Realistic calculation of wind generation capacity credits', Cigre/IEEE Symp. Integration of Wide-Scale Renewable Resources into the Power Delivery System, 2009, Calgary, Canada.
    44. 44)
      • GE Energy: ‘Western wind and solar integration study’. National Renewable Energy Laboratory, Golden, Colorado, Technical Report NREL/SR-550-47434, 2010.
    45. 45)
      • Miranda, M., Dunn, R.: `Spatially correlated wind speed modelling for generation adequacy studies in the UK', IEEE Power Engineering Society General Meeting, 2007.
    46. 46)
      • Louie, H.: `Evaluation of probabilistic models of wind plant power output characteristics', Proc. 10th Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), 2010, Singapore.
    47. 47)
    48. 48)
      • National Grid PLC: ‘Operating in 2020: initial consultation’, 2009, available at http://www.nationalgrid.com.
    49. 49)
      • Sturt, A.: `Stochastic scheduling of wind-integrated power systems', 2011, Ph.D., Imperial College, London.
    50. 50)
      • Hill, D., McMillan, D., Bell, K., Infield, D., Ault, G.: `Application of statistical wind models for system impacts', Universities’ Power Engineering Conf., 2009.
    51. 51)
      • R. Heald , L. Mahrt . The dependence of boundary-layer shear on diurnal variation of stability. J. Appl. Meteorol. , 859 - 867
    52. 52)
      • E. Peterson , J. Hennessey . On the use of power laws for estimates of wind power potential. J. Appl. Meteorol. , 390 - 394
    53. 53)
      • B. Brown , R. Katz , A. Murphy . Time series models to simulate and forecast wind speed and wind power. J. Appl. Meteorol. , 8 , 1184 - 1195
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • Olmos Aguirre, P.: `Probability distribution of wind power during peak demand', 2008, Master, University of Edinburgh.
    58. 58)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0040
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address