Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models

Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study analyses the integration impact of battery energy storage systems (BESSs) on the short-term frequency control in autonomous microgrids (MGs). Short-term frequency stability relates with the primary or speed control level, as defined in the regulations of the classical grids. The focus is on autonomous MGs that dynamically behave similarly to the classical power systems. This is the systems case with classical distributed generators (DGs), but which can also contain renewable energy sources (RESs) in a certain penetration level. During MG islanded operation, the local generators take over most of the frequency control process, by means of their automatic generation control, which include inertia response and primary control. However, RES-based DGs are rarely able to provide grid frequency support, as they lack controllability and usually the power conversion chain does not have the possibility of storing and releasing energy when required by the system. Therefore the need of boosting the MG power reserves by adding energy storage systems is often a requirement. The study highlights the improvement in the MG short-term frequency stability brought by an original BESS control structure enhanced with both inertial response and an adaptive droop characteristic during battery state-of-charge limitations. The conducted analysis is accomplished by adopting aggregated models for the involved control mechanisms. The developed model is analysed in frequency domain, whereas an experimental test bench including a real-time digital simulator with BESS controller in a hardware-in-the-loop structure is used for assessing the system performances.


    1. 1)
      • 1. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag., 2010, 8, (1), pp. 1828 (doi: 10.1109/MPE.2009.934876).
    2. 2)
      • 2. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2009, 4, (5), pp. 438457 (doi: 10.1049/iet-rpg.2009.0049).
    3. 3)
      • 3. Wang, M.Q., Gooi, H.B.: ‘Spinning reserve estimation in microgrids’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 11641174 (doi: 10.1109/TPWRS.2010.2100414).
    4. 4)
      • 4. Jeon, J.H., et al: ‘Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29192929 (doi: 10.1109/TPEL.2010.2078518).
    5. 5)
      • 5. Kim, J., et al: ‘Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 30373048 (doi: 10.1109/TPEL.2010.2073488).
    6. 6)
      • 6. Ross, M., Hidalgo, R., Abbey, C., Joos, G.: ‘Energy storage system scheduling for an isolated microgrid’, IET Renew. Power Gener., 2011, 5, (2), pp. 117123 (doi: 10.1049/iet-rpg.2009.0204).
    7. 7)
      • 7. Shayeghi, H., Shayanfar, H.A., Jalili, A.: ‘Load frequency control strategies: a state-of-the-art survey for the researcher’, Energy Convers. Manage., 2009, 50, (2), pp. 344353 (doi: 10.1016/j.enconman.2008.09.014).
    8. 8)
      • 8. Serban, I., Marinescu, C.: ‘Aggregate load-frequency control of a wind-hydro autonomous microgrid’, Renew. Energy, 2011, 36, (12), pp. 33453354 (doi: 10.1016/j.renene.2011.05.012).
    9. 9)
      • 9. Senjyu, T., Nakaji, T., Uezato, K., Funabashi, T.: ‘A hybrid power system using alternative energy facilities in isolated Island’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 406414 (doi: 10.1109/TEC.2004.837275).
    10. 10)
      • 10. Divya, K.C., Østergaard, J.: ‘Battery energy storage technology for power systems – an overview’, Electr. Power Syst. Res., 2009, 79, (4), pp. 511520 (doi: 10.1016/j.epsr.2008.09.017).
    11. 11)
      • 11. Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: ‘Integration of electric vehicles in the electric power system’, Proc. IEEE, 2011, 99, (1), pp. 168183 (doi: 10.1109/JPROC.2010.2066250).
    12. 12)
      • 12. Vazquez, S., Lukic, S.M., Galvan, E., Franquelo, L.G., Carrasco, J.M.: ‘Energy storage systems for transport and grid applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 38813895 (doi: 10.1109/TIE.2010.2076414).
    13. 13)
      • 13. UCTE: ‘Technical paper – definition of a set of requirements to generating units’ (Union for the Coordination of the Transmission of Electricity (UCTE), 2008), Online:
    14. 14)
      • 14. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach towards standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172 (doi: 10.1109/TIE.2010.2066534).
    15. 15)
      • 15. EN 50160: ‘Voltage characteristics of electricity supplied by public distribution systems’ (European Committee for Electrotechnical Standardization, 2000).
    16. 16)
      • 16. Vrettos, E.I., Papathanassiou, S.A.: ‘Operating policy and optimal sizing of a high penetration RES-BESS system for small isolated grids’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 744756 (doi: 10.1109/TEC.2011.2129571).
    17. 17)
      • 17. Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2010, 5, (3), pp. 258267 (doi: 10.1049/iet-rpg.2010.0052).
    18. 18)
      • 18. Mercier, P., Cherkaoui, R., Oudalov, A.: ‘Optimizing a battery energy storage system for frequency control application in an isolated power system’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14691477 (doi: 10.1109/TPWRS.2009.2022997).
    19. 19)
      • 19. Jones, D.: ‘Estimation of power system parameters’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19801989 (doi: 10.1109/TPWRS.2004.835671).
    20. 20)
      • 20. Rasolomampionona, D.D.: ‘A modified power system model for AGC analysis’. Proc. Int. Conf. IEEE PowerTech, Bucharest, Romania, June–July 2009, pp. 16.
    21. 21)
      • 21. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Professional, 1994), pp. 581626.
    22. 22)
      • 22. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267 (doi: 10.1109/TIE.2010.2048839).
    23. 23)
      • 23. van Wesenbeeck, M.P.N., de Haan, S.W.H., Varela, P., Visscher, K.: ‘Grid tied converter with virtual kinetic storage’. Proc. Int. Conf. IEEE PowerTech, Bucharest, Romania, June–July 2009, pp. 17.
    24. 24)
      • 24. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409 (doi: 10.1109/TIE.2006.881997).
    25. 25)
      • 25. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 369378 (doi: 10.1049/iet-gtd:20045207).
    26. 26)
      • 26. Chung, S.-K.: ‘A phase tracking system for three phase utility interface inverters’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 431438 (doi: 10.1109/63.844502).
    27. 27)
      • 27. Serban, I., Marinescu, C.: ‘Frequency control issues in microgrids with renewable energy sources’. Proc. Int. Symp. Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, May 2011, pp. 16.

Related content

This is a required field
Please enter a valid email address